Закон логики

Законы логики (или логические законы) — это общее название множества законов, образующих основу логической дедукции (см. Дедукция). Понятие о логическом законе восходит к античному понятию о логосе (см. Логос) как о предпосылке объективной («природной») правильности рассуждений. Поскольку логика (см. Логика) изучает характер связи мыслей в процессе рассуждения, существуют определённые формальные и содержательные правила, следование которым обязательно. Различные по своей структуре и степени сложности рассуждения подчиняются разным правилам. Среди них можно выделить основные и производные: основные правила имеют более общий характер, производные — выводятся из основных. Наряду с этим существует такой тип правил логики, которые можно назвать всеобщими. Обычно такие правила называют законами мышления. Под законом вообще имеют в виду внутреннюю, необходимую и существенную связь явлений. Законы мышления представляют собой операциональные директивы мышления. Их происхождение обусловлено рациональной активностью субъекта. Выраженная в правилах, нормах, рекомендациях, целесообразная активность находит своё воплощение в принципах, имеющих всеобщий характер. В отличие от законов естествознания, которые описывают связь явлений природы, многократно повторяемую в идентичных условиях, законы мышления предписывают определённые способы интеллектуальной деятельности. Цель законов логики — сформулировать основания правил и рекомендаций, следуя которым можно достичь истины. Поэтому законы мышления не являются законами в том смысле, в котором указанный термин используется для описаний явлений природы. Таким образом, законы логики представляют собой законы правильного мышления человека о мире, а не законы самого мира.

Правила мышления впервые получают логическое содержание у Аристотеля, положившего начало систематическому описанию и каталогизации таких схем логических связей элементарных высказываний в сложные, истинность которых вытекает из одной только их формы, а точнее — из одного только понимания смысла логических связей, безотносительно к истинностному значению элементарных высказываний. Большинство логических законов, открытых Аристотелем, представляют собой законы силлогизма. Позже были открыты и другие законы, и даже было установлено, что совокупность законов логики бесконечна. В некотором смысле рассмотреть эту совокупность удаётся с помощью различных формальных теорий логического рассуждения — так называемых логических исчислений, в которых интуитивное понятие «логический закон» реализуется в точном понятии «общезначимой формулы» данного исчисления, что, в свою очередь, делает понятие «логический закон» относительным. Однако типом логического исчисления полагаются одновременно и границы этой относительности. При этом тип исчисления, как правило, не является делом произвольного выбора, а диктуется (или подсказывается) «логикой вещей», о которых хотят рассуждать, а также нашей субъективной уверенностью в том или ином характере этой логики. Исчисления, основанные на одной и той же гипотезе о характере «логики вещей», являются эквивалентными в том смысле, что в них каталогизируются одни и те же логические законы. Например, исчисления, основанные на гипотезе двузначности, несмотря на всё их внешнее разнообразие, описывают одну и ту же область классических законов логики — мир тождественных истин (или тавтологий), издавна получивших философскую характеристику «вечных истин» или «истин во всех возможных мирах» (см. Возможные миры). Логикой вещей, отражением которой исторически явились логические законы так называемой интуиционистской логики, является логика умственных математических построений — «логика знания», а не «логика бытия».

Логические законы отличаются от логических правил вывода. Первые представляют класс общезначимых выражений и формулируются в объектном языке исчисления. Вторые служат для описания фактов логического следования (см. Логическое следование) одних выражений из других, не обязательно общезначимых, и формулируются в метаязыке исчисления. В отличие от законов логики, правила вывода имеют вид предписаний и носят, по существу, нормативный характер. При построении исчислений без правил вывода обойтись нельзя, а без законов логики, в принципе, можно (именно так и поступают в исчислениях естественного вывода). Тем не менее, изучение логических законов образует естественный исходный пункт логического анализа приемлемых (логически правильных) способов рассуждений (умозаключений), поскольку понятие «приемлемое» или «логически правильное» рассуждение уточняется через понятие «логический закон».

В традиционной формальной логике термин «закон логики» имел узкий смысл и применялся только к четырём так называемым основополагающим законам правильного мышления — к закону тождества, закону непротиворечия, к закону исключённого третьего и к закону достаточного основания:

  1. Закон тождества. В процессе умозаключения всякое высказывание и суждение должны оставаться тождественными самим себе (см. Закон тождества).
  2. Закон непротиворечия. Два противоположных суждения не могут быть истинными в одно и то же время и в одном и том же отношении (см. Закон непротиворечия).
  3. Закон исключённого третьего. Из двух противоречащих суждений одно истинно, другое ложно, а третьего не дано (см. Закон исключённого третьего).
  4. Закон достаточного основания. Никакое суждение не может утверждаться без достаточного основания (см. Закон достаточного основания).

Указанная «канонизация» термина «закон логики» в настоящее время является данью традиции и не отвечает действительному положению вещей. Тем не менее, эти законы можно принять в методологическом смысле как определённые принципы (или постулаты) теоретического мышления, так как они являются наиболее общими и используются при оперировании понятиями и суждениями, в умозаключениях, доказательствах и опровержениях, и поэтому присутствуют практически во всех логических системах.

В этом смысле закон тождества (lex identitatis) истолковывается как принцип постоянства или принцип сохранности предметного и смыслового значений суждений (высказываний) в некотором заведомо известном или подразумеваемом контексте (в выводе, доказательстве, теории). В языке логических исчислений указанная сохранность обычно выражается формулой A ⊃ A. Принятие закона тождества для суждения A не означает, вообще говоря, принятия самого A. Но если A принято, то закон тождества принимается с необходимостью для исчислений с общезначимой формулой A ⊃ (A ⊃ A). Для исчислений, включающих отрицание, это сведение абстракции постоянства суждения к принятию самого суждения имеет форму закона: (A ⊃ ¬ (A ⊃ A) ⊃ ¬ A), то есть если при допущении суждения для него отрицается закон тождества, то тем самым отрицается и само это суждение.

Закон непротиворечия (lex contradictionis) указывает на недопустимость одновременного утверждения (в рассуждении, в тексте или теории) двух суждений, из которых одно является логическим отрицанием другого, то есть суждений вида A и ¬ A или их конъюнкции, или эквиваленции, или — в более широком смысле — утверждений о тождестве заведомо различных объектов, поскольку обычно правила логики таковы, что позволяют из противоречия выводить произвольные суждения, что обесценивает содержательный смысл умозаключений или теорий. Наличие противоречия в рассуждении (теории) создаёт парадоксальную ситуацию и нередко указывает на несовместимость посылок, положенных в основу рассуждения (теории). Этим обстоятельством часто пользуются в косвенных доказательствах.

Закон исключённого третьего (lex exclusii tertii) на логическом языке записывается формулой A ⌵ ¬ A и утверждает, что нет ничего среднего (промежуточной оценки) между членами противоречивой пары (отсюда другое латинское название этого закона — tertium non datur). В методологическом плане этот закон выражает конструктивно неоправданную идею о разрешимости (потенциально осуществимом указании на истинность или ложность) произвольного суждения. В отличие от формулы, соответствующей закону противоречия, формула, соответствующая закону исключённого третьего, не выводима в интуиционистских и конструктивных исчислениях, хотя и неопровержима в них. Дихотомия установленных истины и лжи неоспорима, но дихотомия утверждения и отрицания оспаривалась неоднократно. Наиболее последовательную критику закона исключённого третьего дал Л. Э. Я. Брауэр. В свете его критики этот закон следует рассматривать только как принцип (или постулат) классической логики.

Закон достаточного основания (lex rationis determinatis seu sufficientis) выражает методологическое требование обоснованности всякого знания, всякого суждения, которое мы хотели бы принять за отображение истинного (действительного) положения вещей. В этом смысле он применим не только к выводному знанию (в частности, к аксиомам и постулатам научных теорий), но и ко всей области фактических истин, не имеющих отношения к формальной логике. Не случайно Г. В. Лейбниц, который ввёл этот принцип в научный обиход, относил его в первую очередь не к логике, а ко всем событиям, которые случаются в мире.

В приложениях логических законов к конкретным ситуациям с особой наглядностью обнаруживается их общая черта: все они представляют собой тавтологии и не несут содержательной, «предметной» информации. Это — общие схемы, отличительная особенность которых в том, что, подставляя в них любые конкретные высказывания (как истинные, так и ложные), мы обязательно получим истинное выражение. Указанные законы мышления имеют в логике такое же значение, какое в математике имеют аксиомы (см. Аксиома) или постулаты и обладают таким же формальным характером, как и формулы алгебры: в последних не говорится о том, по отношению к каким числовым значениям они выполняются, а законы мышления не содержат в себе содержательных характеристик, то есть не квалифицируют то, что именно должно или не должно отождествляться, что именно и чему должно или не должно противоречить, и так далее. Именно в этом и заключается их обобщающий характер как операциональных директив правильного мышления и рассуждения.

Катя Анисимова

законы логики
​ ​ ​

Это знание необходимо, чтобы не допускать ошибок в рассуждениях и замечать, когда их совершают другие.

Катя Анисимова

Мы часто слышим фразы вроде «это нелогично» и «где тут логика». Интуитивно понятно, что логика — это что-то про наши рассуждения, выводы, структуру мыслей. В целом так и есть. Логика — это наука, которая появилась в V веке до нашей эры и изучает законы и форму мышления.

Под формой мышления понимают структуру мысли, а не её содержание. Например, с точки зрения логики выражение «Все шмумрики хжуют тофц с штецеллой на фафлак. Финкус — шмумрик. Финкус хжует тофц с штецеллой на фафлак» абсолютно верно, а «Все планеты Солнечной системы вращаются вокруг Солнца. Земля вращается вокруг Солнца. Следовательно, Земля — планета Солнечной системы» — нет.

Вся логика «живёт» на четырёх законах. Разберёмся, какие это законы и как они работают.

Каждая мысль должна быть равна самой себе, не должна иметь больше одного значения.

В чём суть

Еще до нашей эры Аристотель говорил: «…Иметь не одно значение — значит не иметь ни одного значения; если же у слов нет (определённых) значений, тогда утрачена всякая возможность рассуждать друг с другом, а в действительности и с самим собой, ибо невозможно ничего мыслить, если не мыслить каждый раз что-нибудь одно».

Примеры нарушения

Самый популярный пример нарушения закона тождества — фраза «студенты прослушали лекцию». Слово «прослушали» можно понять в двух значениях: то ли студенты внимательно слушали преподавателя, то ли всё пропустили.

Примером нарушения закона тождества будет и эта шутка:

— Я сломал руку в двух местах.

— Больше не ходи в эти места.

В результате немного более сложных нарушений закона тождества получаются софизмы. Софизм — это внешне правильное доказательство ложной мысли с помощью преднамеренного нарушения логических законов.

Что лучше: вечное блаженство или бутерброд? Конечно же, вечное блаженство. А что может быть лучше вечного блаженства? Конечно же, ничто! Но бутерброд ведь лучше, чем ничто, поэтому бутерброд лучше вечного блаженства.

Подвох здесь в том, что слово «ничто» употребилось сначала в значении «ни один предмет или явление», а потом в значении «отсутствие чего-либо»

Как применять в жизни

Первый закон логики поможет распознать софизмы. Первое, на что стоит обращать внимание, — неоднозначные слова.

Закон противоречия

Высказывание и его отрицание не могут быть одновременно истинными.

Если одно суждение что-то утверждает, а другое то же самое отрицает об одном и том же объекте в одно и то же время и в одном и том же отношении, то они не могут одновременно быть истинными.

Например, два суждения — «котик чёрный» и «котик белый» — не могут одновременно быть истинными, если речь идёт об одном и том же котике, в одно и то же время и в одном и том же отношении. То есть цвет котика сравнивается с одной и той же палитрой.

«Этот рыжий кот оставил по всему ковру чёрные шерстинки». И из детства — «Закрой рот и ешь».

Самое сложное — выявить противоречие. Фраза «в детстве у меня не было детства» не нарушает закон противоречия, а «сделал устный доклад в письменной форме» нарушает. Так что, главное — понять, имеет место противоречие или игра слов.

Закон исключённого третьего

Два противоречащих суждения об одном и том же предмете в одно и то же время и в одном и том же отношении не могут быть одновременно истинными и не могут быть одновременно ложными

Суждения бывают противоположными и противоречащими.

Противоположные суждения всегда предполагают некий третий, промежуточный вариант. Например, для суждений «дом большой» и «дом маленький» промежуточным будет «дом среднего размера». Для противоречащих суждений нет никакого третьего варианта. Например, для суждений «дом большой» и «дом небольшой» третьего верного варианта не предполагается.

Итак, два противоречащих суждения об одном и том же предмете, в одно и то же время и в одном и том же отношении не могут быть одновременно истинными и не могут быть одновременно ложными.

Пример нарушения

Суждения «кот старый» и «кот нестарый» об одном и том же котике в одно и то же время не могут быть одновременно верными.

Примеры простые до безобразия, но в жизни закон противоречия нарушается скорее так: между противоречащими суждениями есть ещё часть монолога, да и сами суждения могут быть высказаны не очень явно. Как с этим быть? Внимательно вслушиваться в то, что говорит собеседник, и следить за мыслью. Если все остальные законы не нарушаются, присмотритесь ещё раз к формулировкам. Возможно, тут замаскированные противоречащие суждения.

Любая мысль (тезис) для того, чтобы иметь силу, обязательно должна быть доказана какими-либо аргументами, причём эти аргументы должны быть достаточными для основания исходной мысли, то есть она должна вытекать из них.

Помните, что такое презумпция невиновности? Она основана на законе достаточного основания. Принцип презумпции невиновности предписывает считать человека невиновным, даже если он даёт показания против себя, до тех пор, пока его вина не будет достоверно доказана какими-либо фактами. Другими словами, признание вины не гарантирует, что человек действительно совершил преступление, а вот улики и доказательства — вполне могут. То есть признание вины — недостаточное основание, а факты и улики, указывающие на преступника, — достаточное.

«Не ставьте мне двойку. Я прочитал весь учебник и, возможно, что-то отвечу». Вывод не вытекает из основания: студент мог прочитать весь учебник, но из этого не следует, что он сможет что-то ответить.

Закон достаточного основания предостерегает от поспешных выводов. Если мы помним о том, что любое утверждение должно быть подкреплено фактами, это поможет распознавать дешёвые сенсации и небылицы.

§ 3. ОСНОВНЫЕ ЗАКОНЫ МЫШЛЕНИЯ

Законы мышления, относящиеся к отдельным логическим формам и операциям, будут рассмотрены в соответствующих главах. Здесь остановимся на основных законах формальной логики. К ним относятся законы: (1) тождества, (2) непротиворечия, (3) исключенного третьего и (4) достаточного основания. Они называются основными, так как выражают коренные свойства логического мышления — его определенность, непротиворечивость, последовательность и обоснованность. Они действуют в любом рассуждении, в какой бы форме оно ни выражалось и какую бы логическую операцию ни выполняло.

1. Закон тождества. Любая мысль в процессе рассуждения должна иметь определенное, устойчивое содержание. Это коренное свойство мышления — его определенность — выражает закон тождества: всякая мысль в процессе рассуждения должна быть тождественна самой себе (а есть а, или а = а, где под а понимается любая мысль).

В символической записи он выражается формулой р ? р (если р, то р), где р — любое суждение, ? — символ импликации (логическая связка «Если…, то…»).

Из закона тождества следует: нельзя отождествлять различные мысли, нельзя тождественные мысли принимать за нетождественные. Нарушение этого требования в процессе рассуждения нередко бывает связано с различным выражением одной и той же мысли в языке.

Например, два суждения: «Н. совершил кражу» и «Н. тайно похитил чужое имущество» — выражают одну и ту же мысль (если, разумеется, речь идет об одном и том же лице). Предикаты этих суждений — равнозначные понятия: кража и есть тайное хищение чужого имущества. Поэтому было бы ошибочным рассматривать эти мысли как нетождественные.

С другой стороны, употребление многозначных слов может привести к ошибочному отождествлению различных мыслей. Например, в уголовном праве словом «штраф» обозначают меру наказания, предусмотренную Уголовным кодексом, а в гражданском праве — меру административного воздействия. Очевидно, употреблять подобное слово в одном значении не следует.

Отождествление различных мыслей нередко связано с различиями в профессии, образовании и т. д. Так бывает в следственной практике, когда обвиняемый или свидетель, не зная точного смысла юридических понятий, понимает их иначе, чем следователь. Это приводит к путанице, неясности, затрудняет выяснение существа дела.

Отождествление различных понятий представляет собой логическую ошибку — подмену понятия, которая может быть как неосознанной, так и преднамеренной.

Соблюдение требований закона тождества имеет важное значение в работе юриста, требующей употребления понятий в их точном значении.

При разбирательстве любого дела важно выяснить точный смысл понятий, которыми пользуются обвиняемый или свидетели, и употреблять эти понятия в строго определенном смысле. В противном случае предмет мысли будет упущен и вместо выяснения дела произойдет его запутывание.

2. Закон непротиворечия. Логическое мышление характеризуется непротиворечивостью. Противоречия разрушают мысль, затрудняют процесс познания. Требование непротиворечивости мышления выражает формально-логический закон непротиворечия: два несовместимых суждения не могут быть одновременно истинными; по крайней мере одно из них необходимо ложно.

В символической записи: ?(p ? ?p) (неверно, что р и не-p одновременно истинны) под р понимается любое суждение, под ?p — отрицание суждения р, знак ? перед всей формулой — отрицание двух суждений, соединенных знаком конъюнкции (логическая связка «и»).

Из закона непротиворечия следует: утверждая что-либо о каком- либо предмете, нельзя, не противореча себе, отрицать то же самое о том же самом предмете, взятом в то же самое время и в том же самом отношении.

Закон непротиворечия действует в отношении всех несовместимых суждений: противоположных и противоречащих.

Противоположными (контрарными) называются два суждения, в которых признак относится ко всем предметам некоторого множества, но в одном из них этот признак утверждается, а в другом этот же признак отрицается. Например: «Все дни на прошлой неделе были дождливыми» и «Ни один день на прошлой неделе не был дождливым». По крайней мере, одно из этих суждений ложно.

Противоречащими (контрадикторными) называются суждения, в одном из которых что-либо утверждается (или отрицается) о каждом предмете некоторого множества, а в другом — то же самое отрицается (утверждается) о некоторой части этого множества. Эти суждения не могут быть одновременно ни истинными, ни ложными: если одно из них истинно, то другое ложно, и наоборот. Например, если суждение «Каждому гражданину Российской Федерации гарантируется право на получение квалифицированной юридической помощи» истинно, то суждение «Некоторым гражданам Российской Федерации не гарантируется право на получение квалифицированной юридической помощи» ложно. Противоречащими являются также два суждения об одном предмете, в одном из которых что-либо утверждается, а в другом то же самое отрицается. Например: «П. привлечен к административной ответственности» и «П. не привлечен к административной ответственности». Одно из этих суждений необходимо истинно, другое — необходимо ложно.

Закон непротиворечия выражает одно из коренных свойств логического мышления — непротиворечивость, последовательность мышления. Его сознательное использование помогает обнаруживать и устранять противоречия в своих и чужих рассуждениях, вырабатывает критическое отношение ко всякого рода неточности, непоследовательности в мыслях и действиях.

Н. Г. Чернышевский подчеркивал, что непоследовательность в мыслях ведет к непоследовательности в поступках. У кого не уяснены принципы во всей логической полноте и последовательности, писал он, у того не только в голове сумбур, но и в делах чепуха.

Умение вскрывать и устранять логические противоречия, нередко встречающиеся в показаниях свидетелей, обвиняемого, потерпевшего, играет важную роль в судебной и следственной практике.

Одно из основных требований, предъявляемых к версии в судебном исследовании, состоит в том, чтобы при анализе совокупности фактических данных, на основании которых она построена, эти данные не противоречили друг другу и выдвинутой версии в целом. Наличие таких противоречий должно привлечь самое серьезное внимание следователя. Однако бывают случаи, когда следователь, выдвинув версию, которую он считает правдоподобной, не принимает во внимание факты, противоречащие этой версии, игнорирует их, продолжает развивать свою версию вопреки противоречащим фактам.

В процессе судебного разбирательства обвинитель и защитник, истец и ответчик выдвигают противоречащие друг другу положения, отстаивая свои доводы и оспаривая доводы противной стороны. Поэтому необходимо тщательно проанализировать все обстоятельства по делу, чтобы окончательное решение суда основывалось на достоверных и непротиворечивых фактах.

Недопустимы противоречия в судебных актах. К числу обстоятельств, по которым приговор признается несоответствующим фактическим обстоятельствам дела, уголовно-процессуальное право относит существенные противоречия, содержащиеся в выводах суда, изложенных в приговоре.

3. Закон исключения третьего. Закон непротиворечив действует по отношению ко всем несовместимым друг с другом суждениям. Он устанавливает, что одно из них необходимо ложно. Вопрос о втором суждении считается открытым: оно может быть истинным, но может быть и ложным.

Закон исключенного третьего действует только в отношении противоречащих (контрадикторных) суждений. Он формулируется следующим образом: два противоречащих суждения не могут быть одновременно ложными, одно из них необходимо истинно: а есть либо b, либо не-b. Истинно либо утверждение некоторого факта, либо его отрицание. Третьего не дано. «Н. виновен в ограблении банка» и «Н. не виновен в этом ограблении»; «Все свидетели допрошены» и «Некоторые свидетели не допрошены»; «Некоторые юристы — адвокаты» и «Ни один юрист не адвокат».

В символической записи: р ? ?p, где р — любое суждение, ?p — отрицание суждения р, ? — символ дизъюнкции (логическая связка «или»).

Подобно закону непротиворечия закон исключенного третьего выражает последовательность, непротиворечивость мышления, не допускает противоречий в мыслях. Вместе с тем, действуя только в отношении противоречащих суждений, он устанавливает, что два противоречащих суждения не могут быть не только одновременно истинными (на что указывает закон непротиворечия), но также и одновременно ложными: если ложно одно из них, то другое необходимо истинно, третьего не дано.

Закон исключенного третьего не может указать, какое именно из данных суждений истинно. Этот вопрос решается другими средствами. Значение закона состоит в том, что он указывает направление в отыскании истины: возможно только два решения вопроса, причем одно из них (и только одно) необходимо истинно.

Закон исключенного третьего требует ясных, определенных ответов, указывая на невозможность отвечать на один и тот же вопрос в одном и том же смысле и «да» и «нет», на невозможность искать нечто среднее между утверждением чего-либо и отрицанием того же самого.

Важное значение имеет закон в юридической практике, где требуется категорическое решение вопроса. Юрист должен решать дело по форме «или — или». Данный факт либо установлен, либо не установлен. Обвиняемый либо виновен, либо не виновен. Jus (право) знает только: «или — или».

4. Закон достаточного основания. Наши мысли о каком-либо факте, явлении, событии могут быть истинными или ложными. Высказывая истинную мысль, мы должны обосновать ее истинность, т. е. доказать ее соответствие действительности. Так, выдвигая обвинение против подсудимого, обвинитель должен привести необходимые доказательства, обосновать истинность своего утверждения. В противном случае обвинение будет необоснованным.

Требование доказанности, обоснованности мысли выражает закон достаточного основания: всякая мысль признается истинной, если она имеет достаточное основание. Если есть b, то есть и его основание а.

Достаточным основанием мыслей может быть личный опыт человека. Истинность некоторых суждений подтверждается путем их непосредственного сопоставления с фактами действительности. Так, для человека, явившегося свидетелем преступления, обоснованием истинности суждения «Н. совершил преступление» будет сам факт преступления, очевидцем которого он был. Но личный опыт ограничен. Поэтому человеку в своей деятельности приходится опираться на опыт других людей, например на показания свидетелей некоторого события. К таким основаниям прибегают обычно в следственной и судебной практике.

Благодаря развитию научных знаний человек все шире использует в качестве основания своих мыслей опыт всего человечества, закрепленный в законах и аксиомах науки, в принципах и положениях, существующих в любой области человеческой деятельности.

Истинность законов, аксиом подтверждена практикой человечества и не нуждается поэтому в новом подтверждении. Для подтверждения какого-либо частного случая нет необходимости обосновывать его при помощи личного опыта. Если, например, нам известен закон Архимеда (каждое тело, погруженное в жидкость, теряет в своем весе столько, сколько весит вытесненная им жидкость), то нет никакого смысла погружать в жидкость какой-либо предмет, чтобы выяснить, сколько он теряет в весе. Закон Архимеда будет достаточным основанием для подтверждения любого частного случая.

Благодаря науке, которая в своих законах и принципах закрепляет общественно-историческую практику человечества, мы для обоснования наших мыслей не прибегаем всякий раз к их проверке, а обосновываем их логически, путем выведения из уже установленных положений.

Таким образом, достаточным основанием какой-либо мысли может быть любая другая, уже проверенная и установленная мысль, из которой с необходимостью вытекает истинность данной мысли.

Если из истинности суждения а следует истинность суждения b, то а будет основанием для b, а b — следствием этого основания.

Связь основания и следствия является отражением в мышлении объективных, в том числе причинно-следственных, связей, которые выражаются в том, что одно явление (причина) порождает другое явление (следствие). Однако это отражение не является непосредственным. В некоторых случаях логическое основание может совпадать с причиной явления (если, например, мысль о том, что число дорожно-транспортных происшествий увеличилось, обосновывается указанием на причину этого явления — гололед на дорогах). Но чаще всего такого совпадения нет. Суждение «Недавно был дождь» можно обосновать суждением «Крыши домов мокрые»; след протекторов автомобильных шин — достаточное основание суждения «В данном месте прошла автомашина». Между тем мокрые крыши и след, оставленный автомашиной, — не причина, а следствие указанных явлений. Поэтому логическую связь между основанием и следствием необходимо отличать от причинно-следственной связи.

Обоснованность — важнейшее свойство логического мышления. Во всех случаях, когда мы утверждаем что-либо, убеждаем в чем-либо других, мы должны доказывать наши суждения, приводить достаточные основания, подтверждающие истинность наших мыслей. В этом состоит коренное отличие научного мышления от мышления ненаучного, которое характеризуется бездоказательностью, способностью принимать на веру различные положения и догмы.

Закон достаточного основания не совместим с различными предрассудками и суевериями. Например, существуют нелепые приметы: разбить зеркало — к несчастью, рассыпать соль — к ссоре и т.д., хотя между разбитым зеркалом и несчастьем, рассыпанной солью и ссорой нет причинной связи. Логика — враг суеверий и предрассудков. Она требует обоснованности суждений и не совместима поэтому с утверждениями, которые строятся по схеме «после этого — значит по причине этого». Эта логическая ошибка возникает в случаях, когда причинная связь смешивается с простой последовательностью во времени, когда предшествующее явление принимается за причину последующего.

Закон достаточного основания имеет важное теоретическое и практическое значение. Фиксируя внимание на суждениях, обосновывающих истинность выдвинутых положений, этот закон помогает отделить истинное от ложного и прийти к верному выводу.

Значение закона достаточного обоснования в юридической практике состоит, в частности, в следующем. Всякий вывод суда или следствия должен быть обоснован. В материалах по поводу какого-либо дела, содержащих, например, утверждение о виновности обвиняемого, должны быть данные, являющиеся достаточным основанием обвинения. В противном случае обвинение не может быть признано правильным. Вынесение мотивированного приговора или решения суда во всех, без исключения, случаях является важнейшим принципом процессуального права.

Вопросы для самопроверки

1. Приведите определения законов тождества, непротиворечив, исключенного третьего и достаточного основания.

2. Какое значение имеет каждый из этих законов для правильного построения мыслей? Для юридической практики?

Данный текст является ознакомительным фрагментом.

Продолжение на Litres.ru

В жизни мы часто слышим фразы «это не поддается логике» или «это нелогично». В целом мы понимаем, что речь идет про неверное суждение, ошибочные выводы. Но в чем конкретно нарушена логика — сказать трудно. Существуют 4 закона логики, с помощью которых можно легко отделить ложь от правды. Логика — это древняя наука, появившаяся в 4 веке до н.э., ее основателями были Аристотель, Сократ, Платон и многие другие известные философы, которые усердно изучали законы и формы правильного логического мышления. Давайте разберем на простых примерах значения основных четырех законов логики и как их применить в жизни.

Любая мысль должна соответствовать самой себе, то есть иметь конкретное значение и быть точной и понятной. Самый известный пример: «ученики прослушали урок». Термин «прослушали» в этом предложение может иметь два определения: то ли ученики ничего не слушали на уроке, то ли, наоборот, внимательно изучали новую тему. Главное, на что необходимо обращать внимание, так это на неоднозначные слова, которые могут иметь несколько значений. Сложнее всего распознать нарушение тождества в сложных утверждениях:

  • Что вы выберите: счастье или конфету? — Счастье.
  • Как вы считаете, что лучше счастья? —Ничто!
  • Но конфета лучше, чем ничто.
  • Поэтому конфета получается лучше счастья.

В примере понятие «ничто» в первом варианте означало «отказ от выбора варианта», во втором, как отсутствие чего-либо.

Пройдите онлайн-курсы бесплатнои откройте для себя новые возможностиНачать изучение

Две отрицающих друг друга мысли не могут быть одинаково верными. Например, когда говорят «черный пес» и «белый пес», имея в виду одного и того же пса в одном промежутке времени, то правильным может быть только одно утверждение. В жизни важно выявлять противоречия, отделять игру слов от лжи.

Два противоречащих утверждения не должны быть одинаково ложными. Тут важно отличать противоречащие от противоположных утверждений. Первые суждения не имеют третьего варианта, например, большая квартира и небольшая квартира. Противоположные суждения допускают, что возможен и другой вариант, например, «маленькая квартира» и «большая квартира», другой вариант — «средняя квартира». На простых примерах принцип понятен, а вот в жизни противоречащие суждения обычно разделены длинным предисловием, который сбивает с мысли.

Истинная мысль должна быть основана на аргументах, чтобы быть истинной. Важно, что само утверждение должно следовать из этих фактов. Например, «я готовился к экзамену, поэтому я не заслужил двойку». Один факт не подтверждает утверждение, студент мог просто прочесть лекции и не заучивать нужный материал. Данный закон помогает не делать преждевременных выводов и не верить, например, разной желтой прессе.

Проверьте себя прямо сейчас, как хорошо вы разбираетесь в логике, пройдите бесплатный онлайн-тест на логику.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *