Вселенская энтропия

Этот пост является вольным переводом ответа, который Mark Eichenlaub дал на вопрос What’s an intuitive way to understand entropy?, заданный на сайте Quora
Энтропия. Пожалуй, это одно из самых сложных для понимания понятий, с которым вы можете встретиться в курсе физики, по крайней мере если говорить о физике классической. Мало кто из выпускников физических факультетов может объяснить, что это такое. Большинство проблем с пониманием энтропии, однако, можно снять, если понять одну вещь. Энтропия качественно отличается от других термодинамических величин: таких как давление, объём или внутренняя энергия, потому что является свойством не системы, а того, как мы эту систему рассматриваем. К сожалению в курсе термодинамики её обычно рассматривают наравне с другими термодинамическими функциями, что усугубляет непонимание.
энтропия
Если в двух словах, то

Энтропия — это то, как много информации вам не известно о системе

Например, если вы спросите меня, где я живу, и я отвечу: в России, то моя энтропия для вас будет высока, всё-таки Россия большая страна. Если же я назову вам свой почтовый индекс: 603081, то моя энтропия для вас понизится, поскольку вы получите больше информации.

почтовый индекс

Почтовый индекс содержит шесть цифр, то есть я дал вам шесть символов информации. Энтропия вашего знания обо мне понизилась приблизительно на 6 символов. (На самом деле, не совсем, потому что некоторые индексы отвечают большему количеству адресов, а некоторые — меньшему, но мы этим пренебрежём).

игральные кости

Или рассмотрим другой пример. Пусть у меня есть десять игральных костей (шестигранных), и выбросив их, я вам сообщаю, что их сумма равна 30. Зная только это, вы не можете сказать, какие конкретно цифры на каждой из костей — вам не хватает информации. Эти конкретные цифры на костях в статистической физике называют микросостояниями, а общую сумму (30 в нашем случае) — макросостоянием. Существует 2 930 455 микросостояний, которые отвечают сумме равной 30. Так что энтропия этого макросостояния равна приблизительно 6,5 символам (половинка появляется из-за того, что при нумерации микросостояний по порядку в седьмом разряде вам доступны не все цифры, а только 0, 1 и 2).
А что если бы я вам сказал, что сумма равна 59? Для этого макросостояния существует всего 10 возможных микросостояний, так что его энтропия равна всего лишь одному символу. Как видите, разные макросостояния имеют разные энтропии.
Пусть теперь я вам скажу, что сумма первых пяти костей 13, а сумма остальных пяти — 17, так что общая сумма снова 30. У вас, однако, в этом случае имеется больше информации, поэтому энтропия системы для вас должна упасть. И, действительно, 13 на пяти костях можно получить 420-ю разными способами, а 17 — 780-ю, то есть полное число микросостояний составит всего лишь 420х780 = 327 600. Энтропия такой системы приблизительно на один символ меньше, чем в первом примере.

Мы измеряем энтропию как количество символов, необходимых для записи числа микросостояний. Математически это количество определяется как логарифм, поэтому обозначив энтропию символом S, а число микросостояний символом Ω, мы можем записать:
S = log Ω
Это есть ничто иное как формула Больцмана (с точностью до множителя k, который зависит от выбранных единиц измерения) для энтропии. Если макросостоянию отвечают одно микросостояние, его энтропия по этой формуле равна нулю. Если у вас есть две системы, то полная энтропия равна сумме энтропий каждой из этих систем, потому что log(AB) = log A + log B.

больцман

Из приведённого выше описания становится понятно, почему не следует думать об энтропии как о собственном свойстве системы. У системы есть опеделённые внутренняя энергия, импульс, заряд, но у неё нет определённой энтропии: энтропия десяти костей зависит от того, известна вам только их полная сумма, или также и частные суммы пятёрок костей.
Другими словами, энтропия — это то, как мы описываем систему. И это делает её сильно отличной от других величин, с которыми принято работать в физике.

Физический пример: газ под поршнем

Классической системой, которую рассматривают в физике, является газ, находящийся в сосуде под поршнем. Микросостояние газа — это положение и импульс (скорость) каждой его молекулы. Это эквивалентно тому, что вы знаете значение, выпавшее на каждой кости в рассмотренном раньше примере. Макросостояние газа описывается такими величинами как давление, плотность, объём, химический состав. Это как сумма значений, выпавших на костях.
газ в сосуде под поршнем
Величины, описывающие макросостояние, могут быть связаны друг с другом через так называемое «уравнение состояния». Именно наличие этой связи позволяет, не зная микросостояний, предсказывать, что будет с нашей системой, если начать её нагревать или перемещать поршень. Для идеального газа уравнение состояния имеет простой вид:
p = ρT
хотя вы, скорее всего, лучше знакомы с уравнением Клапейрона — Менделеева pV = νRT — это то же самое уравнение, только с добавлением пары констант, чтобы вас запутать. Чем больше микросостояний отвечают данному макросостоянию, то есть чем больше частиц входят в состав нашей системы, тем лучше уравнение состояния её описывают. Для газа характерные значения числа частиц равны числу Авогадро, то есть составляют порядка 1023.
Величины типа давления, температуры и плотности называются усреднёнными, поскольку являются усреднённым проявлением постоянно сменяющих друг друга микросостояний, отвечающих данному макросостоянию (или, вернее, близким к нему макросостояниям). Чтобы узнать в каком микросостоянии находится система, нам надо очень много информации — мы должны знать положение и скорость каждой частицы. Количество этой информации и называется энтропией.
Как меняется энтропия с изменением макросостояния? Это легко понять. Например, если мы немного нагреем газ, то скорость его частиц возрастёт, следовательно, возрастёт и степень нашего незнания об этой скорости, то есть энтропия вырастет. Или, если мы увеличим объём газа, отведя поршень, увеличится степень нашего незнания положения частиц, и энтропия также вырастет.

Твёрдые тела и потенциальная энергия

Если мы рассмотрим вместо газа какое-нибудь твёрдое тело, особенно с упорядоченной структурой, как в кристаллах, например, кусок металла, то его энтропия будет невелика. Почему? Потому что зная положение одного атома в такой структуре, вы знаете и положение всех остальных (они же выстроены в правильную кристаллическую структуру), скорости же атомов невелики, потому что они не могут улететь далеко от своего положения и лишь немного колеблются вокруг положения равновесия.
кристаллическая стурктура
Если кусок металла находится в поле тяготения (например, поднят над поверхностью Земли), то потенциальная энергия каждого атома в металле приблизительно равна потенциальной энергии других атомов, и связанная с этой энергией энтропия низка. Это отличает потенциальную энергию от кинетической, которая для теплового движения может сильно меняться от атома к атому.
Если кусок металла, поднятый на некоторую высоту, отпустить, то его потенциальная энергия будет переходить в кинетическую энергию, но энтропия возрастать практически не будет, потому что все атомы будут двигаться приблизительно одинаково. Но когда кусок упадёт на землю, во время удара атомы металла получат случайное направление движения, и энтропия резко увеличится. Кинетическая энергия направленного движения перейдёт в кинетическую энергию теплового движения. Перед ударом мы приблизительно знали, как движется каждый атом, теперь мы эту информацию потеряли.

Понимаем второй закон термодинамики

Второй закон термодинамики утверждает, что энтропия (замкнутой системы) никогда не уменьшается. Мы теперь можем понять, почему: потому что невозможно внезапно получить больше информации о микросостояниях. Как только вы потеряли некую информацию о микросостоянии (как во время удара куска металла об землю), вы не можете вернуть её назад.

нельзя просто так взять и объяснить второй закон термодинамики

Давайте вернёмся обратно к игральным костям. Вспомним, что макросостояние с суммой 59 имеет очень низкую энтропию, но и получить его не так-то просто. Если бросать кости раз за разом, то будут выпадать те суммы (макросостояния), которым отвечает большее количество микросостояний, то есть будут реализовываться макросостояния с большой энтропией. Самой большой энтропией обладает сумма 35, и именно она и будет выпадать чаще других. Именно об этом и говорит второй закон термодинамики. Любое случайное (неконтролируемое) взаимодействие приводит к росту энтропии, по крайней мере до тех пор, пока она не достигнет своего максимума.

Перемешивание газов

И ещё один пример, чтобы закрепить сказанное. Пусть у нас имеется контейнер, в котором находятся два газа, разделённых расположенной посередине контейнера перегородкой. Назовём молекулы одного газа синими, а другого — красными.
Если открыть перегородку, газы начнут перемешиваться, потому что число микросостояний, в которых газы перемешаны, намного больше, чем микросостояний, в которых они разделены, и все микросостояния, естественно, равновероятны. Когда мы открыли перегородку, для каждой молекулы мы потеряли информацию о том, с какой стороны перегородки она теперь находится. Если молекул было N, то утеряно N бит информации (биты и символы, в данном контексте, это, фактически, одно и тоже, и отличаются только неким постоянным множителем).

Разбираемся с демоном Максвелла

Ну и напоследок рассмотрим решение в рамках нашей парадигмы знаменитого парадокса демона Максвелла. Напомню, что он заключается в следующем. Пусть у нас есть перемешанные газы из синих и красных молекул. Поставим обратно перегородку, проделав в ней небольшое отверстие, в которое посадим воображаемого демона. Его задача — пропускать слева направо только красных, и справа налево только синих. Очевидно, что через некоторое время газы снова будут разделены: все синие молекулы окажутся слева от перегородки, а все красные — справа.

демон максвелла

Получается, что наш демон понизил энтропию системы. С демоном ничего не случилось, то есть его энтропия не изменилась, а система у нас была закрытой. Получается, что мы нашли пример, когда второй закон термодинамики не выполняется! Как такое оказалось возможно?
Решается этот парадокс, однако, очень просто. Ведь энтропия — это свойство не системы, а нашего знания об этой системе. Мы с вами знаем о системе мало, поэтому нам и кажется, что её энтропия уменьшается. Но наш демон знает о системе очень много — чтобы разделять молекулы, он должен знать положение и скорость каждой из них (по крайней мере на подлёте к нему). Если он знает о молекулах всё, то с его точки зрения энтропия системы, фактически, равна нулю — у него просто нет недостающей информации о ней. В этом случае энтропия системы как была равна нулю, так и осталась равной нулю, и второй закон термодинамики нигде не нарушился.
Но даже если демон не знает всей информации о микросостоянии системы, ему, как минимум, надо знать цвет подлетающей к нему молекулы, чтобы понять, пропускать её или нет. И если общее число молекул равно N, то демон должен обладать N бит информации о системе — но именно столько информации мы и потеряли, когда открыли перегородку. То есть количество потерянной информации в точности равно количеству информации, которую необходимо получить о системе, чтобы вернуть её в исходное состояние — и это звучит вполне логично, и опять же не противоречит второму закону термодинамики.

ЭНТРОПИЯ

(от греч. entropia-поворот, превращение)- понятие, впервые введённое в термодинамике для определения меры необратимого рассеяния энергии. В статистической физике Э. служит мерой вероятности осуществления к.-л. макроскопич. состояния, в теории информации- мерой неопределённости к.-л. опыта (испытания), к-рый может иметь разл. исходы. Эти трактовки Э. имеют глубокую внутр. связь. Напр., на основе представлений об информационной энтропии можно вывести все равновесные статистич. распределения (см. Гиббса распределения).

Энтропия в термодинамике была введена Р. Клаузиусом (R. Clausius, 1865) на основе второго начала термодинамики, к-рое можно сформулировать математически в виде Клаузиуса неравенства5126-12.jpg . Интеграл берётся по замкнутому циклич. процессу, при к-ром система получает (или у неё отбирают) малые количества теплоты dQ при соответствующих значениях абс. темп-ры Т. Знак равенства относится к обратимым процессам (р а в е н с т в о К л а у з и у с а). Из равенства Клаузиуса следует, что для обратимого процесса

5126-13.jpg

есть полный дифференциал ф-ции состояния S, называемый Э. (дифференциальное определение Э.). Разность Э. системы в двух произвольных состояниях А и В (заданных, напр., значениями темп-р и объёмов) равна

5126-14.jpg

(интегральное определение Э.). Интегрирование здесь ведётся вдоль пути любого квазистатич. обратимого процесса, связывающего состояния А и В. Т. о., из второго начала термодинамики следует, что существует однозначная ф-ция состояния S, к-рая при обратимых адиабатич. процессах (dQ =0) остаётся постоянной. Из неравенства Клаузиуса вытекает, что при необратимых процессах

5126-15.jpg

поэтому в адиабатически изолированных системах (см. Термодинамическая система )при необратимых процессах Э. может только возрастать (закон возрастания Э.).

Согласно первому началу термодинамики,

5126-16.jpg

т. е. сообщаемое системе кол-во теплоты равно сумме приращения внутренней энергии dU и совершаемой системой элементарной работы, где а i — внеш. параметры состояния, Ai — сопряжённые им внутр. параметры. Когда единственным внеш. параметром является объём системы V, элементарная работа равна pdV, где р- давление. С учётом первого начала термодинамики дифференциальное определение Э. принимает вид

5126-17.jpg

откуда следует, что Э. представляет собой потенциал термодинамический при выборе в качестве независимых переменных внутр. энергии U и внеш. параметров а i . Частные производные Э.

5126-18.jpg

определяют уравнения состояния системы. Уравнение (3) определяет абсолютную температурную шкалу.

Ф-ла (2) определяет Э. лишь с точностью до аддитивной постоянной (т. е. оставляет начало отсчёта Э. произвольным). Абс. значение Э. можно установить с помощью третьего начала термодинамики, согласно к-рому принимается S= 0 при Т=0.

Энтропия в неравновесной термодинамике может быть определена для таких неравновесных состояний, когда можно ввести представление о локальном равновесии термодинамическом в отд. подсистемах (напр., в малых, но мак-роскопич. объёмах). По определению, Э. неравновесной системы равна сумме Э. её частей, находящихся в локальном равновесии. Термодинамика неравновесных процессов позволяет более детально исследовать процесс возрастания Э. и вычислить кол-во Э., образующееся в единице объёма в единицу времени вследствие отклонения от тер-модинамич. равновесия — производство энтропии. Для пространственно неоднородных неравновесных систем второе начало термодинамики может быть записано в виде у р а в н е н и я б а л а н с а д л я п л о т н о с т и

э н т р о п и и S(x, t), где х — радиус-вектор физически бесконечно малого элемента среды:

5126-19.jpg

JS(x, t) — вектор потока Э.; s(x,t)>=0-л о к а л ь н о е п р ои з в о д с т в о э н т р о п и и. Полное производство Э. равно интегралу от s( х, t )по объёму системы. Если т е р м о д ин а м и ч. с и л ы Xi(x, t )(градиенты темп-ры, хим. потенциалов компонентов, массовой скорости и т. д.) создают в системе сопряжённые им потоки Ji (x, t )(теплоты, вещества, импульса и др.), то в такой системе 5126-20.jpg . Если величины Xi , Ji — векторы или тензоры, то в выражении для s подразумевается их полная свёртка. Потоки Ji связаны с термодинамич. силами Xk линейными соотношениями 5126-21.jpg, где Lik- онсагеровские кинетические коэффициенты. Следовательно, локальное производство Э. 5126-22.jpgвыражается квадратичной формой от термодинамич. сил.

Энтропия в равновесной статистической физике зависит от выбора статистич. ансамбля. Для микроканонич. ансамбля Гиббса (см. Гиббса распределения), описывающего равновесное состояние изолированных систем, Э. выражается через статистический вес состояния W(5126-23.jpg, N, V):

5126-24.jpg

где W(5126-25.jpg, N, V) — число квантовомеханич. состояний, энергия к-рых 5126-26.jpg лежит в узком интервале 5126-27.jpg вблизи значения 5126-28.jpg системы из N частиц в объёме V. В классич. статистич. физике W- величина безразмерного объёма в фазовом пространстве системы при заданных 5126-29.jpg, N, V:

5126-30.jpg

где d Г N = dpdq/N!h3N; dpdq — элемент объёма в 6N -мерном фазовом пространстве системы из N частиц ( р — обобщённый импульс; q — обобщённая координата). Интегрирование ведётся в пределах 5126-31.jpg — Гамильтона функция системы из N частиц). Для канонич. ансамбля Гиббса, описывающего равновесное состояние систем в термостате, Э. выражается через каноническое распределение Гиббса f(p, q):

5126-32.jpg

Аналогичным образом определяется Э. для систем с переменным числом частиц в термостате через большое каноническое распределение Гиббса fN(p, q):

5126-33.jpg

В квантовой статистике Э. для всех равновесных ансамблей выражается через статистич. оператор (или матрицу плотности) 5126-34.jpg:

5126-35.jpg

Символ Sp5126-36.jpg означает сумму диагональных матричных элементов оператора 5126-37.jpg; суммирование ведётся по волновым ф-циям состояний допустимой симметрии относительно перестановки частиц.

Вдали от областей сосуществования фаз и критич. точек значения Э., вычисленные с помощью разл. ансамблей Гиббса, совпадают с термодинамич. Э. в пределе N5126-38.jpg, V5126-39.jpg. при N/V=const (см. Термодинамический предел).

Информационная энтропия. Э. в статистич. физике связана с информационной Э., к-рая служит мерой неопределённости сообщений (сообщения описываются множеством величин х1 х2, …, х n и вероятностей Р1,Р2,…,Р n их появления). Для дискретного статистич. распределения вероятностей Pk информационной Э. (с точностью до постоянного множителя) наз. величину

5126-40.jpg

Величина Su =0, если к.-л. из Pk равна 1, а остальные — нулю, т. е. информация достоверна, неопределённость отсутствует. Э. принимает наибольшее значение, когда все Pk одинаковы (неопределённость в информации максимальна). Непрерывной случайной величине х сф-цией распределения f(x )соответствует информационная Э.

5126-41.jpg

Информационная Э., как и термодинамическая, обладает свойством аддитивности (Э. неск. сообщений равна сумме Э. отд. сообщений). Из вероятностной трактовки Э. в статистич. физике выводятся осн. равновесные распределения: канонич. распределение Гиббса, к-рое соответствует макс. значению информационной Э. при заданной ср. энергии, и большое канонич. распределение Гиббса — при заданных ср. энергии и ср. числе частиц в системе.

Энтропия в неравновесной статистической физике зависит от способа описания неравновесного состояния системы. Напр., неравновесное гидродинамич. состояние од-нокомпонентных газов и жидкостей определяется неоднородными распределениями ср. значений плотностей энергии <5126-42.jpg(x)>t, числа частиц <5126-43.jpg(x)>t и импульса <5126-44.jpg(x)>t, т. е. плотностей интегралов движения. Динамические переменные 5126-45.jpg в классич. случае являются ф-циями координат и импульсов частиц, а в кван. случае-соответствующими операторами. Операция усреднения <…>t выполняется с н е р а в н о в е с н о й ф у н к ц и е й р а с п р е д е л е н и я f(p, q, t), удовлетворяющей Лиувилля уравнению дf/дt ={H, f}; Н — гамильтониан системы, {Н, f} — Пуассона скобка. В квантовом случае в уравнении Лиувилля надо заменить f на неравновесный статистич. оператор p^(t), а классич. скобку Пуассона — на квантовую.

Э. в неравновесной статистич. физике пропорциональна (S = kSu )максимуму информационной Э. Su=-<ln f>t при заданных ср. значениях динамических переменных, выбранных для описания неравновесного состояния. Напр., если неравновесное состояние характеризуется ср. значениями 5126-46.jpg , то максимуму информац. Э. соответствует л о к а л ь н о-р а в н о в е с н о е р а с п р е д ел е н и е

5126-47.jpg

где 5126-48.jpg -плотность энергии в сопровождающей системе координат, движущейся с массовой скоростью u(x, t). Ф у н к ц и о н а л М а -с ь е — П л а н к а Ф(t) определяется из условия нормировки fl и зависит от b(x, t), b( х, t)m(x, t),u(x,t), где b(x, t) — обратная локальная темп-pa, m(x, t) — локальный хим. потенциал. В этом случае неравновесная Э.

5126-49.jpg

является функционалом

5126-50.jpg

Операция <…>tl означает усреднение по распределению (13), причём

5126-51.jpg

Основная идея неравновесной термодинамики состоит в том, что термодинамич. равенства должны выполняться для элемента среды, движущегося с массовой скоростью. Из (15) следует, что для этого необходимо, чтобы

5126-52.jpg

Равенства (16) являются условиями самосогласованного выбора параметров b(x, t),m(x,t), u(x, t )и определяют их зависимость от неравновесных ср. значений <H^(x)>t ,

5126-53.jpg.

Локально-равновесное распределение служит вспомогательным распределением для определения понятия Э. неравновесного состояния, но не описывает необратимых переноса явлений. Потоки энергии и импульса, вычисленные с помощью fl (t), соответствуют потокам этих величин в идеальной гидродинамике. Неравновесная ф-ция распределения может быть получена как формальное решение ур-ния Лиувилля с нач. условием локального равновесия в нек-рый момент времени t0: f(t; t0) = exp fl(t0). Оператор Лиувилля L определяется через скобки Пуассона: iLf= {H, f}. Это решение зависит от нач. состояния, к-рое реальная система должна «забывать» из-за корреляций между элементами среды. Можно считать, что пучок фазовых траекторий с различными t0(-5126-54.jpg<t0<t )реализует ансамбль Гиббса для неравновесных состояний. Предполагая, что нач. состояния распределены с экспоненциальной вероятностью T-1 ехр(г и п о т е з а о б а п р и о р н ы х в е р оя т н о с т я х), получим неравновесную ф-цию распределения

5126-55.jpg

Т-1 =e5126-56.jpg+0 после термодинамич. предельного перехода при вычислении средних. Ф-ция распределения (17) удовлетворяет уравнению Лиувилля с малым источником в правой части e5126-58.jpg+0. Кроме того, предполагаются выполненными условия самосогласования (16).

5126-57.jpg

С помощью ф-ции распределения (17) можно усреднить уравнения движения для 5126-59.jpg, 5126-60.jpg и получить теплопроводности уравнение и Навье — Стокса уравнение, в к-рых коэффициенты тепло-проводности и вязкости представлены в виде пространственно-временных корреляционных функций потоков энергии и импульса ( Грина-Кубо формулы). Отсюда следует уравнение баланса (5) для плотности Э. и другие соотношения неравновесной термодинамики.

В неравновесной статистич. физике закон возрастания Э. тесно связан со свойством симметрии уравнения Лиувилля относительно обращения времени. Малый член ~e5126-61.jpg+0 в уравнении (18) нарушает эту симметрию, снимая вырождение, т. е. отбирая запаздывающее решение уравнения Лиувилля. Такое решение приводит к s>0 в уравнении (5), т. е. делает возможным возрастание Э. При этом существенно, что e5126-62.jpg+0 после термодинамич. предельного перехода. Другое решение уравнения Лиувилля (c e5126-63.jpg-0) приводит к убыванию Э. и должно быть отброшено как нефизическое.

Э. для других процессов, отличных от гидродинамических, может быть определена с помощью к в а з и р а в н ов е с н о г о с о с т о я н и я, к-рое соответствует максимуму информационной Э. при заданных средних значениях не-к-рого набора динамических переменных, характеризующих неравновесное состояние. В общем случае квазиравновесное состояние может сильно отличаться от локального равновесия.

Понятие Э. используется также в классич. механике как характеристика хаоса динамического в системах с неустойчивостью движения-экспоненциальной расходимостью близких в нач. момент траекторий. Количественной мерой неустойчивости таких систем служит э н т р о п и я К р ыл о в а- К о л м о г о р о в а — С и н а я, или К- э н т р о п и я. Для широкого класса систем K -энтропия выражается через положительные показатели Ляпунова по формуле

5126-64.jpg

Если положительные показатели Ляпунова отсутствуют и, следовательно, движение устойчиво, то K -энтропия равна нулю.

Лит.: Майер Дж., Гепперт-Майер М., Статистическая механика, пер. с англ., 2 изд., М., 1980; де Гроот С., Мазур П., Неравновесная термодинамика, пер. с англ., М., 1964; Зубарев Д. Н., Неравновесная статистическая термодинамика, М., 1971; его же, Современные методы статистической теории неравновесных процессов, в кн.: Итоги науки и техники, сер. Современные проблемы математики, т. 15, М., 1980; Исихара А., Статистическая физика, пер. с англ., М., 1973; Ахиезер А. И., Пелет-минский С. В., Методы статистической физики, М., 1977; Гиббс Дж., Термодинамика. Статистическая механика, М., 1982; Леон-тович М. А., Введение в термодинамику. Статистическая физика, М., 1983; Климонтович Ю. Л., Статистическая теория открытых систем, М., 1995. Д. Н. Зубарев, В. Г. Морозов.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.

Здравствуйте, Михаил Валерьевич!
В одной из олимпиад я встретил задание, в котором нужно было считать энтропию различным молекул при абсолютном нуле. Вот текст задачи:
Третий закон термодинамики гласит, что при абсолютном нуле температуры,
энтропия идеального кристалла равняется нулю. Это следствие формулы S=kB
lnW. Хоть третий закон и определяет поведение
веществ при абсолютном нуле температуры, не все вещества имеют нулевую энтропию
при данной температуре.
4.1. Посчитайте число микросостояний и значение энтропии для одной молекулы азота
при 0К. Проведите аналогичные расчеты для двух молекул и 1 моль N2
4.2. Посчитайте число микросостояний и значение энтропии для одной молекулы
моноксида углерода при 0К. Проведите аналогичные расчеты для двух молекул и 1
моль СО.
4.4. Приведите число микросостояний и рассчитайте значение энтропии для молекул
CH3Cl и CH4 при 0К.
Насколько я понял, у молекулы азота только одно микросостояние при данной температуре, но вот как посчитать остальные, я не знаю. Помогите пожалуйста с данным вопросом. Спасибо
.

Как энтропия управляет нашей жизнью
​ ​ ​

Проблемы всегда возникают сами по себе, а вот на их решение приходится затрачивать много усилий, энергии и внимания. Это связано с одной из главных сил во Вселенной, которая управляет жизнью каждого из нас, — энтропией.

Представьте, что вы взяли коробку с пазлом и высыпали все кусочки мозаики на стол. В теории кусочки могут упасть на свои места так, что картинка сразу сложится целиком. Но в жизни так никогда не бывает. Почему?

Потому что шансы на это ничтожно малы, ведь каждый кусочек пазла должен упасть только одним определённым образом, чтобы картина сложилась. С точки зрения математики, вероятность, что это произойдёт случайно, минимальна.

Что такое энтропия

энтропия: что это такое
jamesclear.com

Энтропия — это мера неупорядоченности. И она всегда увеличивается со временем. Всё естественным образом стремится к беспорядку. Здания разрушаются. Машины ржавеют. Люди стареют. Даже горы постепенно рассыпаются.

Это правило, известное как второе начало термодинамики, — один из фундаментальных законов нашей Вселенной. Оно гласит, что в изолированной системе энтропия остаётся неизменной или увеличивается (но никогда не уменьшается).

Но не стоит впадать в панику, есть и хорошие новости. Мы можем сопротивляться силам энтропии. Мы можем собрать рассыпавшийся пазл. Прополоть заросший сад. Убраться в захламлённой комнате. Организовать разрозненных людей в сплочённую команду.

Так как Вселенная стремится к беспорядку, нам приходится затрачивать энергию, чтобы создать в своей жизни стабильность и упорядоченность.

Чтобы отношения были успешными, нужны забота и внимание. Чтобы дом был в хорошем состоянии, его нужно ремонтировать и содержать в чистоте. Для успеха команды необходимы общение и сотрудничество. Если не прилагать усилий, всё будет стремиться к распаду.

Этот вывод — что беспорядок со временем всегда увеличивается, и мы можем противостоять этому, затрачивая энергию, — открывает главную цель жизни. Мы должны прилагать усилия, чтобы создавать порядок, который сможет устоять перед неумолимым напором энтропии.

Как энтропия проявляется в нашей жизни

С помощью энтропии можно объяснить многие непонятные и удивительные факты, например:

Почему наша жизнь так необыкновенна

Представьте человеческий организм. Атомы, из которых состоит тело, могли бы сложиться практически в бесконечное количество вариантов и не создать никакой формы жизни. C точки зрения математики, вероятность нашего существования очень мала. И всё-таки мы существуем.

Во Вселенной, где всем заправляет энтропия, наличие жизни с такой чёткой устойчивой организацией поразительно.

Почему нам нравятся искусство и красота

С помощью энтропии можно объяснить, почему искусство и красота кажутся нам такими эстетически привлекательными. Художник создаёт особую форму порядка и симметрии, какую Вселенная, скорее всего, никогда не породила бы самостоятельно. Число красивых комбинаций гораздо меньше общего количества всех комбинаций. Красота — редкость во Вселенной, полной беспорядка. Поэтому симметричное лицо редко и красиво, ведь несимметричных вариантов несравнимо больше.

Почему идеальные для себя условия нужно не найти, а создать

У каждого из нас свои таланты, навыки и интересы. Но общество и культура, в которых мы живём, не создавались специально под нас. Помня об энтропии, подумайте, каковы шансы, что условия, в которых вы выросли, идеальны для раскрытия ваших талантов?

Крайне маловероятно, что жизнь создаст для вас ситуацию, идеально подходящую под ваши способности. Скорее всего, вы окажетесь в положении, не совсем соответствующем вашим навыкам и потребностям.

Мы обычно описываем такое состояние, как «не в своей тарелке», «не в своей стихии». Естественно, в таких условиях гораздо сложнее добиться успеха, принести пользу, победить. Зная это, мы должны сами создавать для себя идеальные условия жизни.

Сложности в жизни возникают не потому, что планеты так выстроились, и не потому, что какие-то высшие силы сговорились против вас. Это просто действует закон энтропии. Состояний беспорядка гораздо больше, чем упорядоченных. Учитывая всё это, удивительно не то, что в жизни есть проблемы, а то, что мы можем их разрешать.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *