Центр тяжести тела

Как известно, сила тяжести тела равна векторной сумме сил тяжести, которые действуют на все материальные точки, на которые можно разбить рассматриваемое тело. Точку, к которой приложена результирующая сила тяжести, называют центром тяжести. Если известно положение центра тяжести, то можно считать, что на тело действует только одна сила тяжести, приложенная к центру тяжести.

Следует учитывать, что силы тяжести, действующие на отдельные элементы тела, направлены к центру Земли и не являются строго параллельными. Но так как размеры большинства тел на Земле много меньше ее радиуса, поэтому эти силы считают параллельными.

Определение центра тяжести тела

Определение

Центром тяжести называют точку, через которую проходит равнодействующая всех сил тяжести, действующих на материальные точки, на которые разбито рассматриваемое тело, при любом положении тела в пространстве.

Центр тяжести — это точка, относительно которой суммарный момент сил тяжести равен нулю при любом положении тела.

От положения центра тяжести зависит устойчивость всех конструкций.

Как найти центр тяжести?

Для нахождения центра тяжести тела сложной формы необходимо мысленно разбить тело на части простой формы и определить место нахождения центров тяжести для них. У тел простой формы центр тяжести определяют, используя их симметрию. Так, центр тяжести однородных диска и шара расположен в их центре, однородного цилиндра в точке на середине его оси; однородного параллелепипеда на пересечении его диагоналей и т, д. У всех однородных тел центр тяжести совпадает с центром симметрии. Центр тяжести может находиться вне тела, например, у кольца.

Определив, где расположены центры тяжести отдельных частей тела, переходят к поиску места расположения центра тяжести тела в целом. Тело представляют в виде системы материальных точек. При этом каждая точка имеет массу своей части тела и располагается в ее центре тяжести.

Координаты центра тяжести тела

В трехмерном пространстве координаты центра тяжести для твердого тела нахояд как:

\

В векторной форме записи система уравнений (1) представляется как:

\

Центр тяжести, центр масс и центр инерции тела

Считают, что центр тяжести тела совпадают с центром масс тела, если его размеры малы в сравнении с расстоянием до центра Земли. При этом формулы, которые определяют положение цента тяжести и центра масс тела совпадают с выражениями (1) и (2). В основной массе задач центр тяжести принимают совпадающим с центром масс тела.

Сила инерции в неинерциальных системах отсчета, движущихся поступательно, приложена к центру тяжести тела.

Но центробежная сила инерции (в общем случае) не приложена к центру тяжести, поскольку в неинерциальной системе отсчета на элементы тела действуют разные центробежные силы инерции (даже если массы элементов равны), так как расстояния до оси вращения разные.

Примеры задач с решением

Пример 1

Задание: Каковы координаты центра тяжести системы из трех точечных масс, расположенных в вершинах и одной в центре равностороннего треугольника, со стороной равной $a\ (м)$ (рис.1)?

Решение: Определение для координат $x_c\ и\ y_c$ центра тяжести в нашем случае запишем в виде:

\ \

Из рис.1 мы видим, что соответствующие абсциссы точек равны:

\

Тогда абсцисса центра тяжести получается равной:

\

Найдем ординаты точек.

\

Для того чтобы найти ординату $y_2$ найдем, высоту в равностороннем треугольнике:

\

Ординату $y_3$ найдем, учитывая, что медианы в равностороннем треугольнике точкой пересечения делятся в отношении 2:1 от вершины, имеем:

\

Вычислим ординату центра тяжести:

\

Ответ: $x_c=0,6a\ {\rm \ }{\rm м}$; $y_c=\frac{a\sqrt{3}\ }{6}$ м

Пример 2

Задание: Каковы координаты центра тяжести системы из четырех элементарных масс, расположенных в вершинах куба со стороной равной $a$ (рис.2)?

Решение: Координату $x_c$ центра тяжести найдем как:

\

Ординату центра тяжести вычислим как:

Смотрите также решения задач по нахождению центра тяжести в онлайн решебниках Яблонского (С.8) и Мещерского (§ 9).

Если тело, центр тяжести которого нужно определить, можно отождествить с фигурой, составленной из линий (например, замкнутый или незамкнутый контур, изготовленный из проволоки, как на рис. 173), то вес Gi каждого отрезка li можно представить в виде произведения
Gi = lid,
где d – постоянный для всей фигуры вес единицы длины материала.

После подстановки в формулы (1) вместо Gi их значений lid постоянный множитель d в каждом слагаемом числителя и знаменателя можно вынести за скобки (за знак суммы) и сократить. Таким образом, формулы для определения координат центра тяжести фигуры, составленной из отрезков линий, примут вид:
xc = (∑ lixi) / ∑ li;
(2) yc = (∑ liyi) / ∑ li;
zc = (∑ lizi) / ∑ li.

Если тело имеет вид фигуры, составленной из расположенных различным образом плоскостей или кривых поверхностей (рис. 174), то вес каждой плоскости (поверхности) можно представить так:
Gi = Fip,
где Fi – площади каждой поверхности, а p – вес единицы площади фигуры.

Если же однородное тело можно разделить на простые части определенной геометрической формы (рис. 175), то вес каждой части
Gi = Viγ,
где Vi – объем каждой части, а γ – вес единицы объема тела.

При решении некоторых задач на определение положения центра тяжести тел иногда необходимо знать, где расположен центр тяжести дуги окружности, кругового сектора или треугольника.

Если известен радиус дуги r и центральный угол 2α, стягиваемый дугой и выраженный в радианах, то положение центра тяжести C (рис. 176, а) относительно центра дуги O определится формулой:
(5) xc = (r sin α)/α.

Если же задана хорда AB=b дуги, то в формуле (5) можно произвести замену
sin α = b/(2r)
и тогда
(5а) xc = b/(2α).

В частном случае для полуокружности обе формулы примут вид (рис. 176, б):
(5б) xc = OC = 2r/π = d/π.

Если же задана хорда сектора, то:
(6а) xc = b/(3α).

В частном случае для полукруга обе последние формулы примут вид (рис. 176, г)
(6б) xc = OC = 4r/(3π) = 2d/(3π).

Центр тяжести площади любого треугольника расположен от любой стороны на расстоянии, равном одной трети соответствующей высоты.

У прямоугольного треугольника центр тяжести находится на пересечении перпендикуляров, восставленных к катетам из точек, расположенных на расстоянии одной трети длины катетов, считая от вершины прямого угла (рис. 177).

При решении задач на определение положения центра тяжести любого однородного тела, составленного либо из тонких стержней (линий), либо из пластинок (площадей), либо из объемов, целесообразно придерживаться следующего порядка:

1) выполнить рисунок тела, положение центра тяжести которого нужно определить. Так как все размеры тела обычно известны, при этом следует соблюдать масштаб;

2) разбить тело на составные части (отрезки линий или площади, или объемы), положение центров тяжести которых определяется исходя из размеров тела;

3) определить или длины, или площади, или объемы составных частей;

4) выбрать расположение осей координат;

5) определить координаты центров тяжести составных частей;

6) найденные значения длин или площадей, или объемов отдельных частей, а также координат их центров тяжести подставить в соответствующие формулы и вычислить координаты центра тяжести всего тела;

7) по найденным координатам указать на рисунке положение центра тяжести тела.

§ 23. Определение положения центра тяжести тела, составленного из тонких однородных стержней

Задача 122. Определить положение центра тяжести плоской фигуры (рис. 178), изогнутой из тонкой проволоки.

Задача 123. Определить положение центра тяжести плоской фигуры OAB, изогнутой из тонкой проволоки в виде квадранта (рис. 179).

Задача 124. Определить положение центра тяжести пространственно изогнутой проволочной фигуры (рис. 180); размеры – в мм.

§ 24. Определение положения центра тяжести фигур, составленных из пластинок

Задача 126. Определить положение центра тяжести фигуры, составленной из трех тонких плоских пластинок прямоугольной формы, пересекающихся друг с другом под…

В последней задаче, а также в задачах, приведенных в предыдущем параграфе, расчленение фигур на составные части не вызывает особых затруднений. Но иногда фигура имеет такой вид, который позволяет разделить ее на составные части несколькими способами, например тонкую пластинку прямоугольной формы с треугольным вырезом (рис. 183). При определении положения центра тяжести такой пластинки ее площадь можно разделить на четыре прямоугольника (1, 2, 3 и 4) и один прямоугольный треугольник 5 – несколькими способами. Два варианта показаны на рис. 183, а и б.

Наиболее рациональным является тот способ деления фигуры на составные части, при котором образуется наименьшее их число. Если в фигуре есть вырезы, то их можно также включать в число составных частей фигуры, но площадь вырезанной части считать отрицательной. Поэтому такое деление получило название способа отрицательных площадей.

Пластинка на рис. 183, в делится при помощи этого способа всего на две части: прямоугольник 1 с площадью всей пластинки, как будто она целая, и треугольник 2 с площадью, которую считаем отрицательной.

Задача 127. Определить положение центра тяжести тонкой однородной пластинки, имеющей ось симметрии. Форма и размеры пластинки показаны на рис. 184…

Задача 128. Определить положение центра тяжести плоской однородной пластинки ABCDEFG, размеры которой в см указаны на рис. 185.

§ 25. Определение положения центра тяжести сечений, составленных из профилей стандартного проката

При решении задач, приведенных в этом параграфе, нужно пользоваться таблицами из ГОСТа на прокатную сталь: ГОСТ 8509–57, ГОСТ 8510–57, ГОСТ 8239–56, ГОСТ 8240–56.

Эти таблицы для каждого профиля содержат их размеры и площадь, а для уголков и швеллера, кроме того, – координаты центров тяжести.

Задача 130. Определить положение центра тяжести симметричного сечения, составленного, как показано на рис. 187, из полосы размером 120×10 мм, двутавра…

Задача 131. Определить положение центра тяжести сечения, составленного, как показано на рис. 188, из трех профилей стандартного проката: швеллера № 10…

§ 26. Определение положения центра тяжести тела, составленного из частей, имеющих простую геометрическую форму

Чтобы решать задачи на определение положения центра тяжести тела, составленного из частей, имеющих простую геометрическую форму, необходимо иметь навыки определения координат центра тяжести фигур, составленных из линий или площадей.

Задача 133. Определить положение центра тяжести тела, составленного из куба I, имеющего горизонтальную цилиндрическую канавку II, и прямоугольного параллелепипеда…

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *