С какой скоростью?

6.2.1. Форма и общая структура Галактики

Панорама Галактики

Галактика Млечный Путь (или просто Галактика) — гигантская звёздная система, в которой находится Солнечная система, все видимые невооружённым глазом отдельные звёзды, а также огромное количество звёзд, сливающихся вместе и наблюдаемых в виде млечного пути. Млечный Путь — одна из многочисленных галактик Вселенной. Является спиральной галактикой с четырьмя рукавами и перемычкой типа SBb по классификации Хаббла, и вместе с галактикой Андромеды (M31) и галактикой Треугольника (М33), а также несколькими десятками меньших галактик-спутников образует Местную группу галактик, которая, в свою очередь, входит в Сверхскопление Девы.

Компьютерная модель Галактики: вид «сверху»

Галактика Млечный Путь представляет собой огромную сплюснутую систему, симметричную относительно главной плоскости и состоящую из более чем 150 млрд. звёзд, разреженного газа, пыли и космических лучей. Поперечник Галактики составляет около 30 кпк (100 тыс. св. лет). Важнейшими элементами структуры Галактики являются сферическая составляющая, центральное сгущение (балдж), звёздно-газово-пылевой диск, спиральные рукава (ветви).

Схема строения Галактики

В средней части Галактики находится утолщение (балдж), составляющее около 5 кпк в поперечнике. Центр Галактики при наблюдении из Солнечной системы проецируется в созвездие Стрельца. В галактической плоскости сосредоточено большое количество межзвёздной пыли, благодаря которой свет, идущий от галактического центра, ослабляется в 1012 раз. Поэтому центр невидим в оптическом диапазоне. Галактический центр наблюдается в радио-, ИК, рентгеновском и гамма-диапазонах. Масса центрального скопления составляет примерно 109ℳ☉.
Your browser does not support the video tag.

Строение Галактики

Ядра галактик являются центрами их конденсации и начального звёздообразования. Там должны находиться самые старые звёзды. По всей видимости, в самом центре ядра Галактики находится сверхмассивная чёрная дыра (Стрелец А*) массой около 3,7 × 106ℳ☉, что показано исследованием орбит близлежащих звёзд. По направлению к центру Галактики, а также по мере приближения к её плоскости звёздная плотность возрастает и в центре составляет 105–106 звёзд в пк3, при этом в окрестности Солнца звёздная плотность всего 0,12 пк–3.

Центр Галактики в ИК диапазоне

Звёздный диск содержит основное количество звёзд Галактики. В диске Галактики находится Солнце и практически все звёзды, наблюдаемые невооружённым глазом. В экваториальной плоскости диска концентрируются наиболее молодые объекты Галактики – звёзды ранних спектральных классов О и В, классические цефеиды, сверхновые второго типа, пыль и газ. Все эти объекты образуют наиболее тонкий диск (плоскую составляющую Галактики) толщиной 100–200 пк. Старые звёзды и связанные с ними планетарные туманности образуют более толстый диск. Толщина всего звёздного диска составляет 500–600 пк.

Рукава Галактики

Галактика относится к классу спиральных галактик, что означает, что у Галактики есть спиральные рукава (ветви), расположенные в плоскости диска. Именно в рукавах находятся наиболее молодые объекты (массивные концентрации газа и молодых звёзд) звёздного диска Галактики. Сферическая составляющая включает старые звёзды и шаровые звёздные скопления, окружённые очень разреженным горячим слабо намагниченным газом. Гало Галактики — невидимый компонент Галактики сферической формы, который простирается за видимую часть Галактики. В основном состоит из разреженного газа, звёзд и тёмной материи. Последняя составляет основную массу Галактики.

Пузыри Ферми

В 2010-м году в результате наблюдений в гамма-диапазоне с помощью космического телескопа им. Ферми (Fermi Gamma-ray Space Telescope) над и под ядром Галактики открыты пузыри Ферми (названы в честь телескопа) – гигантские (диаметр каждого около 25 тыс. св. лет) области пространства, испускающие электромагнитное излучение в рентгеновском (ближе к ядру Галактики) и гамма-диапазонах (на периферии). Пузыри Ферми образуются в результате уменьшения длины волны излучения при рассеянии фотонов на движущихся электронах (обратное комптоновское рассеяние), выбрасываемых чёрной дырой, находящейся в ядре Галактики.
Your browser does not support the video tag.

Пузыри Ферми

Солнце расположено в рукаве Ориона на 20–25 пк выше плоскости симметрии нашей Галактики и удалено от центра на расстояние 7,5–8 кпк (26000 св. лет). Для ориентации среди объектов Галактики принята галактическая система координат. Положение объектов в этой системе небесных координат задаётся галактическими долготой λ и широтой β.

6.2.2. Вращение и масса Галактики

Близкие к Солнцу звёзды движутся вместе с ним перпендикулярно к направлению на центр Галактики. Это движение является следствием общего вращения Галактики, скорость которого меняется с расстоянием от её центра (дифференциальное вращение). Такое вращение имеет следующие особенности:1.Вращение происходит по часовой стрелке, если смотреть на Галактику со стороны её северного полюса.2.Угловая скорость вращения убывает по мере удаления от центра. Однако это убывание медленнее, чем если бы вращение звёзд вокруг центра Галактики происходило по законам Кеплера.3.Центральная часть диска в области балджа вращается почти твёрдотельно, и поэтому линейная скорость вращения растёт пропорционально расстоянию вплоть до максимального значения около 250 км/с. 4.Солнце и звёзды в его окрестности совершают полный оборот вокруг центра Галактики примерно за 240–250 млн. лет. Орбитальная скорость Солнца равна 217 км/с.5.Масса Галактики может быть оценена из условия, что движение объектов происходит по кривой, близкой к окружности. Из условия равенства центростремительного ускорения на расстоянии r = 15 кпк и гравитационного, обусловленного массой, заключённой внутри радиуса r, получаем массу Галактики:ℳGalaxy = v2r/G ≈ 3 × 1041 кг ≈ 1011ℳ☉.

Кривая вращения звёзд Галактики

Из всей видимой массы Галактики примерно 98% процентов приходится на массы звезд и около 2% – на газ, пыль и другие составляющие. Таким образом, в результате наблюдений установлено, что звёзды вращаются вокруг центра Галактики с постоянной скоростью в большом диапазоне расстояний от центра галактики, причём гораздо быстрее, чем ожидалось, если бы они находились в потенциале Ньютона. Проблема вращения галактик – это несоответствие между наблюдаемыми скоростями вращения материи в дисковых частях спиральных галактик и предсказаниями классической динамики, учитывающими только видимую массу. В настоящее время считается, что это несоответствие выдаёт присутствие «тёмной материи», которая пронизывает Галактику и простирается до галактического гало.

6.2.3. Происхождение и эволюция Галактики

Согласно современным представлениям, Галактика образовалась примерно через 400 тыс. лет после Большого Взрыва из медленно вращавшегося газового облака, по своим размерам превосходившего её современные размеры в десятки раз. Первоначально оно состояло из смеси 75% водорода и 25% гелия (по массе) и почти не содержало тяжёлых элементов.

Your browser does not support the video tag.

Эволюция Галактики

В течение примерно миллиарда лет это облако свободно сжималось под действием сил гравитации. Коллапс неизбежно привёл к фрагментации и началу процесса звёздообразования. Сначала газа было много, и он находился на больших расстояниях от плоскости вращения. Возникли звёзды первого поколения, а также шаровые скопления. Их современное распределение (гало) соответствует первоначальному распределению газа, близкому к сферическому. Наиболее массивные звёзды первого поколения быстро проэволюционировали и обогатили межзвёздную среду тяжёлыми элементами (главным образом за счёт вспышек сверхновых). Та часть газа, которая не превратилась в звёзды, продолжала свой процесс сжатия к центру Галактики. Из-за сохранения момента количества движения, её вращение становилось быстрее, образовался диск, и в нём снова начался процесс звёздообразования. Второе поколение звёзд оказалось более богатым тяжёлыми элементами. Оставшийся газ сжался в более тонкий слой, в результате чего возникла плоская составляющая – основная область современного звёздообразования.

6.2.4. Тёмная масса и её возможные носители

Концепция тёмной (или скрытой) материи (массы) (Cold Dark Matter) Вселенной основана на необходимости объяснения ряда наблюдаемых астрофизических эффектов: распределения скоростей звёзд в Галактике, гравитационного линзирования излучения удалённых объектов тёмными гало (сферическими составляющими) галактик, вириального парадокса, формирования крупномасштабной структуры Вселенной и др. Скопления галактик обнаруживают следующую особенность: для многих из них масса, определённая по скоростям собственного движения галактик в скоплении, оказывается заметно больше массы, определённой по общей светимости галактик. Массу скопления, определённую на основе теоремы вириала, называют вириальной. В соответствии с теоремой вириала для связанной стационарной системы, части которой взаимодействуют друг с другом по закону 1/r, кинетическая энергия такой системы равна половине модуля её потенциальной энергии. Для частицы массой m, обращающейся по круговой орбите вокруг центральной массы ℳ:Eкин = ½|Eграв| = mv2/2 = Gℳm/(2R).Если известны размер скопления R и дисперсия скоростей галактик v, то можно получить оценку вириальной массы скопления:ℳvt ≈ v2R/G.Другой способ определения массы скопления состоит в том, что полную наблюдаемую светимость скопления умножают на стандартное отношение масса/светимость, найденное независимо для отдельных галактик. Такое отношение различно для галактик различных типов, но если известно, что в данном скоплении преобладают галактики какого-то определённого типа, то суммарную массу этих галактик таким способом действительно можно оценить.Оказывается, что суммарная масса галактик меньше вириальной массы скопления (вириальный парадокс):ℳvt > ℳL.Для разрешения вириального парадокса, объяснения кривых дифференциального вращения галактик и некоторых других явлений необходимо наличие в галактиках и их скоплениях значительных масс скрытого (тёмного, т.е. несветящегося) вещества. По современным данным средняя плотность наблюдаемого вещества составляет 3 × 10–31 г/см3, а средняя плотность Вселенной на два порядка больше (10–29 г/см3).В отличие от обычного барионного «светящегося» вещества, под тёмной понимается материя, которая не принимает участия в электрослабом взаимодействии (т.е., в частности, не испускает и не поглощает электромагнитное излучение), и присутствие которой обнаруживается только по гравитационным эффектам. В настоящее время предполагается, что на долю обычной барионной материи приходится не более 5% плотности Вселенной. Примерно половину барионной материи составляют светящиеся объёкты (видимая материя) – звёзды, межзвёздные газопылевые облака, планеты. Тёмная барионная материя – это макроскопические объекты гало галактик (Massive Astrophysical Compact Halo Objects, MACHO): маломассивные звёзды (коричневые карлики), очень массивные юпитероподобные планеты, остывшие белые карлики, нейтронные звёзды и чёрные дыры.Около 23% плотности Вселенной составляет тёмная материя, носители которой имеют небарионную природу. В зависимости от скоростей частиц различают горячую и холодную тёмную материю. Горячая тёмная материя состоит из частиц, движущихся с околосветовыми скоростями, по-видимому, из нейтрино. Холодная тёмная материя должна состоять из массивных медленно движущихся («холодных») частиц или сгустков вещества. Экспериментально такие частицы пока не обнаружены. В качестве кандидатов на роль холодной тёмной материи выступают слабо взаимодействующие массивные частицы (Weakly Interactive Massive Particles, WIMP): аксионы, фотино, гравитино и др. (дополнительно о тёмной материи см. в разделе 7.3.12).

6.2.5. Общая характеристика ближайших галактик. Столкновение галактик

Невооружённым глазом в безлунную ночь на небе видны только три объекта, не принадлежащие нашей Галактике – Туманность Андромеды, Большое и Малое Магеллановы Облака (два последних видны только в южном полушарии). Каждый из этих объектов представляет собой отдельную галактику.

Туманность Андромеды

Туманность Андромеды — спиральная галактика типа Sb. Эта ближайшая к Млечному Пути сверхгигантская галактика находится на расстоянии 2,54 млн. св. лет от Солнечной системы. Её протяжённость составляет 260 тыс. св. лет, что в 2,6 раза больше, чем у Млечного Пути. По современным данным, в её состав входит около триллиона звёзд.

Большое Магелланово Облако

Большое Магелланово Облако (БМО) — карликовая галактика типа SBm, расположенная на расстоянии около 168 тыс. св. лет от нашей Галактики. Она занимает область неба южного полушария в созвездиях Золотой Рыбы и Столовой Горы и на наших широтах никогда не видна. БМО приблизительно в 20 раз меньше по диаметру, чем Млечный Путь и содержит около 5 млрд. звёзд. Малое Магелланово Облако — карликовая галактика типа SBm, спутник Млечного Пути. Находится на расстоянии около 200 тыс. св. лет в созвездии Тукана. Содержит только 1,5 млрд. звёзд.

Малое Магелланово Облако

Ближайшая к Солнечной системе галактика (расстояние 25 тысяч св. лет) – это карликовая галактика в созвездии Большого Пса (CMa Dwarf), состоящая всего из 1 млрд. звёзд.Приблизительно через 5 млрд. лет должно произойти столкновение галактик Млечный Путь и Туманность Андромеды. Как и при всех подобных столкновениях, из-за малой концентрации вещества в галактиках и крайней удаленности объектов друг от друга маловероятно, что объекты вроде звёзд действительно столкнутся. Если это предположение верно, то звёзды и газ Туманности Андромеды станут видны невооруженным взглядом примерно через 3 млрд. лет. Если столкновение произойдет, то галактики, скорее всего, сольются в одну большую галактику.В настоящее время известно, что Туманность Андромеды приближается к Млечному Пути со скоростью около 300 км/с, но произойдёт ли столкновение или галактики просто разойдутся, пока точно не известно. По крайней мере, даже если не произойдёт столкновения самих дисков, гало тёмной материи двух галактик столкнутся.

?

Земля делает один оборот вокруг своей оси почти за 24 часа (если быть точными, то за 23ч 56мин 4,09сек или 23,93 часа). Поскольку окружность Земли на экваторе составляет 40075 км, то любой объект на экваторе вращается со скоростью приблизительно 1674 км в час или примерно 465 метров (0,465 км) в секунду (40075 км делим на 23,93 часа и получаем 1674 км в час).

На Северном полюсе (90 градусах северной широты) и Южном полюсе (90 градусах южной широты), скорость фактически равна нулю, потому что точки полюсов вращаются на очень медленной скорости.

Для того чтобы определить скорость на любой другой широте, просто умножьте косинус широты на скорость вращения планеты на экваторе (1674 км в час). Косинус 45 градусов равен 0,7071, таким образом, умножаем 0,7071 на 1674 км в час и получаем 1183,7 км в час.

Косинус необходимой широты легко определить с помощью калькулятора или посмотреть в таблице косинусов.

Скорость вращения Земли для других широт:

10 градусов: 0.9848×1674=1648,6 км в час;

20 градусов: 0.9397×1674=1573,1 км в час;

30 градусов: 0.866×1674=1449,7 км в час;

40 градусов: 0.766×1674=1282,3 км в час;

50 градусов: 0.6428×1674=1076,0 км в час;

60 градусов: 0.5×1674=837,0 км в час;

70 градусов: 0.342×1674=572,5 км в час;

80 градусов: 0.1736×1674=290,6 км в час.

Циклическое торможение

Все циклично, даже скорость вращения нашей планеты, которую геофизики могут измерить с точностью до миллисекунд. Вращение Земли, как правило, имеет пятилетние циклы замедления и ускорения, и последний год цикла замедления часто взаимосвязан со всплеском землетрясений по всему миру.

Так как 2018 год является последним в цикле замедление, ученые ожидают в этом году рост сейсмической активности. Корреляция не является причинно-следственной связью, но геологи всегда ищут инструменты, чтобы попытаться предсказать, когда произойдет очередное мощное землетрясение.

Колебания земной оси

Земля при вращении совершает небольшие колебания, поскольку ее ось дрейфует на полюсах. Было замечено, что дрейф земной оси ускорился с 2000 года, двигаясь со скоростью 17 см в год на восток. Ученые установили, что ось по-прежнему движется на восток вместо того, чтобы двигаться вперед и назад из-за комбинированного эффекта таяния Гренландии и Антарктиды, а также потери воды в Евразии.

Дрейф оси, как предполагается, особенно чувствителен к изменениям, происходящим на 45 градусах северной и южной широты. Это открытие привело к тому, что ученые наконец смогли ответить на давний вопрос о том, почему ось вообще дрейфует. Колебание оси на Восток или Запад было вызвано сухими или влажными годами в Евразии.

С какой скоростью Земля движется вокруг Солнца?

В дополнение к скорости вращения Земли вокруг своей оси, наша планета также вращается вокруг Солнца со скоростью около 108000 км в час (или примерно 30 км в секунду), и полностью завершает свою орбиту вокруг Солнца за 365,256 дней.

Только в 16-м веке люди поняли, что Солнце является центром нашей Солнечной системы, и что Земля перемещается вокруг него, а не является неподвижным центром Вселенной.

Вы сидите, стоите или лежите, читая эту статью, и не ощущаете, что Земля вращается вокруг своей оси с бешеной скоростью — примерно 1 700 км/ч на экваторе. Однако скорость вращения не кажется такой уж быстрой, если перевести ее в км/с. Получится 0,5 км/с — едва заметная вспышка на радаре, в сравнении с другими окружающими нас скоростями.

В Telegram-канале «Лайфхакер» только лучшие тексты о технологиях, отношениях, спорте, кино, финансах и многом другом. Подписывайтесь!

Так же, как и другие планеты Солнечной системы, Земля вращается вокруг Солнца. И чтобы удерживаться на своей орбите, она двигается со скоростью 30 км/с. Венера и Меркурий, находящиеся ближе к Солнцу, двигаются быстрее, Марс, орбита которого проходит за орбитой Земли, движется намного медленнее нее.

Движение планет солнечной системы по орбитам

Но даже Солнце не стоит на одном месте. Наша галактика Млечный Путь — огромная, массивная и тоже подвижная! Все звезды, планеты, газовые облака, частицы пыли, черные дыры, темная материя — все это движется относительно общего центра масс.

По предположениям ученых, Солнце находится на расстоянии 25 000 световых лет от центра нашей галактики и двигается по эллиптической орбите, совершая полный оборот каждые 220–250 млн лет. Получается, что скорость Солнца — около 200–220 км/с, что в сотни раз выше скорости движения Земли вокруг оси и в десятки раз выше скорости ее движения вокруг Солнца. Вот так выглядит движение нашей Солнечной системы.

Движение Солнечной системы во Вселенной

Стационарна ли галактика? Снова нет. Гигантские космические объекты обладают большой массой, а следовательно, создают сильные гравитационные поля. Дайте Вселенной немного времени (а оно у нас было — примерно 13,8 миллиардов лет), и все начнет двигаться в направлении наибольшего притяжения. Вот почему Вселенная не однородна, а представляет собой галактики и группы галактик.

Что это означает для нас?

Это означает, что Млечный Путь тянут к себе другие галактики и группы галактик, расположенные поблизости. Это означает, что доминируют в этом процессе массивные объекты. И это означает, что не только наша галактика, но и все окружающие испытывают влияние этих «тягачей». Мы все ближе подходим к пониманию того, что происходит с нами в космическом пространстве, но нам все еще не хватает фактов, например:

  • каковы были начальные условия, при которых зародилась Вселенная;
  • как различные массы в галактике двигаются и изменяются со временем;
  • как образовывался Млечный Путь и окружающие галактики и скопления;
  • и как это происходит сейчас.

Однако есть трюк, который поможет нам разобраться.

Вселенную наполняет реликтовое излучение с температурой 2,725 К, которое сохранилось со времен Большого Взрыва. Кое-где есть крошечные отклонения — около 100 мкК, но общий температурный фон постоянен.

Это происходит потому, что Вселенная образовалась в результате Большого Взрыва 13,8 миллиардов лет назад и до сих пор расширяется и охлаждается.

Эпохи эволюции Вселенной

Через 380 000 лет после Большого Взрыва Вселенная охладилась до такой температуры, что стало возможным образование атомов водорода. До этого фотоны постоянно взаимодействовали с остальными частицами плазмы: сталкивались с ними и обменивались энергией. По мере остывания Вселенной заряженных частиц стало меньше, а пространства между ними — больше. Фотоны смогли свободно перемещаться в пространстве. Реликтовое излучение — это фотоны, которые были излучены плазмой в сторону будущего расположения Земли, но избежали рассеяния, так как рекомбинация уже началась. Они достигают Землю сквозь пространство Вселенной, которая продолжает расширяться.

Томсоновское рассеяние, реликтовое излучение

Вы сами можете «увидеть» это излучение. Помехи, которые возникают на пустом канале телевизора, если вы используете простую антенну, похожую на заячьи уши, на 1% вызваны реликтовым излучением.

И все-таки температура реликтового фона не одинакова во всех направлениях. По результатам исследований миссии Planck, температура несколько различается в противоположных полушариях небесной сферы: она немного выше на участках неба южнее эклиптики — около 2,728 K, и ниже в другой половине — около 2,722 K.

Карта реликтового излучения
Карта микроволнового фона, сделанная при помощи телескопа Planck.

Эта разница почти в 100 раз больше остальных наблюдаемых колебаний температуры реликтового фона, и это вводит в заблуждение. Почему так происходит? Ответ очевиден — эта разница происходит не из-за флуктуаций реликтового излучения, она появляется, потому что есть движение!

эффект Доплера

Когда вы приближаетесь к источнику света или он приближается к вам, спектральные линии в спектре источника смещаются в сторону коротких волн (фиолетовое смещение), когда отдаляетесь от него или он от вас — спектральные линии смещаются в сторону длинных волн (красное смещение).

Реликтовое излучение не может быть более или менее энергичным, значит, мы движемся сквозь пространство. Эффект Доплера помогает определить, что наша Солнечная система движется относительно реликтового излучения со скоростью 368 ± 2 км/с, а местная группа галактик, включающая Млечный Путь, галактику Андромеды и галактику Треугольника, движется со скоростью 627 ± 22 км/с относительно реликтового излучения. Это так называемые пекулярные скорости галактик, которые составляют несколько сотен км/с. Помимо них существуют еще космологические скорости, обусловленные расширением Вселенной и рассчитываемые по закону Хаббла.

Благодаря остаточному излучению от Большого Взрыва мы можем наблюдать, что во Вселенной постоянно все движется и изменяется. И наша галактика — лишь часть этого процесса.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *