Решение прямоугольного треугольника

Решение прямоугольного треугольника по двум сторонам

Если даны две стороны прямоугольного треугольника, то третья сторона может быть вычислена по теореме Пифагора. Острые углы определяются по формулам тригонометрических функций острого угла — Синус угла — sin(A), Косинус угла — cos(A), Тангенс угла — tg(A), Котангенс угла — ctg(A), Секанс угла — sec(A), Косеканс угла — cosec(A).

Решение прямоугольного треугольника

Если известны катет a и гипотенуза c

Второй катет b определится по теореме Пифагора:

\

Угол A определится по формуле синуса:

\

Поскольку сумма всех углов треугольника равна 180° то второй острый угол определится так:

\

Вычислить, найти решение прямоугольного треугольника по двум сторонам (катет и гипотенуза)

Гипотенуза с определится по теореме Пифагора:

\

Угол A определится по формуле тангенса:

\

Поскольку сумма всех углов треугольника равна 180° то второй острый угол определится так:

\

Вычислить, найти решение прямоугольного треугольника по двум сторонам (катет и катет)

Решение прямоугольного треугольника по стороне и острому углу

Если дан острый угол A, то B найдется по формуле:

\

Стороны можно найти по следующим формулам:

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *