Откуда берется дождь?

Под воздействием солнечного тепла вода с поверхности озер, рек, морей, океанов и ручьев испаряется, превращаясь в пар. Пар очень легкий, он поднимается вверх, в воздух, где мельчайшие водяные капельки собираются в облака и тучи. Водяные капельки столь малы, что парят в воздухе. Если становится теплее, облако может совсем исчезнуть, раствориться — капельки испаряются и делаются невидимыми. Если же холодает, капельки сливаются — сотни тысяч их образуют одну полновесную каплю. Такие капли становятся уже слишком тяжелыми для того, чтобы продолжать свое парение в небе, они падают на землю — идет дождь.


Дождь идет, когда маленькие капельки воды, собранные в облаке, слипаются и увеличиваются. Если воздух больше не может их удерживать, они падают на землю в виде дождя.

Ветер разносит тучи над землей, и они проливают на нее живительную влагу. Ведь без дождя не будут расти деревья, цветы, травы.

Мы и сами можем вызвать «дождь». Наполним кубиками льда кастрюльку с ручкой и подержим ее над большой кастрюлей с кипящей водой (будьте осторожны, не ошпарьтесь!). Что же произойдет? Очень влажный, горячий воздух, насыщенный паром, поднимается вверх и нагревает стенки охлажденной льдом кастрюльки. Пар этот конденсируется, оседая на стенках кастрюльки, спивается в большие капли и стекает вниз. Идет дождь!

См. также:
Что такое снег?
Откуда берется град?
Где чаще всего бывают грозы?

6 років тому Немає коментарів

Sorry, this entry is only available in
Російська
На жаль, цей запис доступний тільки на
Російська.
К сожалению, эта запись доступна только на
Російська.

Обычно под естественными природными богатствами понимают лишь минералы, добываемые из недр Земли. Однако в последние годы ученые стали уделять много внимания «богатствам атмосферы», а именно дождю и снегу. Все чаще из разных частей света приходят сооб­щения о нехватке воды. Это явление особенно харак­терно для засушливых и полузасушливых районов. К сожалению, оно не ограничивается только этими ме­стами. В связи с увеличением населения Земли в сель­ском хозяйстве более широко применяется ирригация, растет, распространяясь по всему земному шару, про­мышленность. А это с каждым годом увеличивает по­требность в пресной воде. В ряде областей недостаток дешевой воды является важнейшим фактором, ограни­чивающим рост экономики.

В настоящее время имеется всего два основных источника пресной воды: 1) накопленная вода в озерах и подземных слоях, 2) вода в атмосфере в виде дождя и снега.

В последнее время были предприняты большие уси­лия по разработке средств опреснения воды в океанах. Однако вода, получаемая подобным путем, еще слишком дорога, чтобы ее можно было использовать для агротех­нических и промышленных целей.

Воды озер имеют большое значение для близ расположенных населенных пунктов. Но если озера удалены от населенных пунктов на несколько сотен километров, зна­чение их почти полностью утрачивается, так как про­кладка труб, установка и эксплуатация насосов слишком удорожают стоимость доставляемой воды. Вероятно, мо­жет показаться удивительным тот факт, что в периоды продолжительной жаркой погоды с малым количеством осадков некоторые пригороды Чикаго испытывают серьезную нехватку воды, несмотря на то что они нахо­дятся менее чем в 80 км от одного из величайших хра­нилищ пресной воды— озера Мичиган.

В некоторых районах, например в южной части штата Аризона, большая доля воды, используемой для иррига­ции и городского хозяйства, добывается из подземных водоносных слоев. К сожалению, водоносные слои по­полняются просачивающейся дождевой водой весьма не­значительно. Та вода, которая добывается в настоящее время из-под земли, весьма древнего происхождения: она осталась там еще со времен обледенения. Количество такой воды, называемой реликтовой, ограничено. Есте­ственно, что при интенсивной добыче воды с помощью насосов уровень ее все время понижается. Несомненно, что общее количество подземной воды достаточно ве­лико. Однако с чем больших глубин добывается вода, тем она дороже. Поэтому для некоторых районов должны изыскиваться другие, более рентабельные источники пресной воды.

Одним из таких источников является атмосфера. Благодаря испарению с морей и океанов в атмосфере существует большое количество влаги. Как часто гово­рят, атмосфера представляет собой океан с низкой плот­ностью воды. Если взять столб воздуха, простирающийся от поверхности земли до высоты 10 км, и сконденсиро­вать весь водяной пар, содержащийся в нем, то толщина слоя полученной воды будет лежать в диапазоне от нескольких десятых долей сантиметра до 5 см. Наимень­ший слой воды дает холодный и сухой воздух, наиболь­ший— теплый и влажный. Например, в южной части штата Аризона в июле и августе толщина слоя воды, содержащейся в столбе атмосферы, составляет в сред­нем более 2,5 см. На первый взгляд это количество воды кажется небольшим. Однако если учесть общую пло­щадь, занимаемую штатом Аризона, то получится весьма внушительная цифра. Следует также заметить, что за­пасы этой воды практически неисчерпаемы, так как во время ветров воздух штата Аризона постоянно насыщен влагой.

Естественно возникает жизненно важный вопрос: ка­кое же количество водяного пара может выпасть в виде дождя или снега в данной местности? Метеорологи фор­мулируют этот вопрос несколько иначе. Они спраши­вают, насколько эффективны в этом районе процессы образования дождя. Другими словами, какая часть воды (в процентах), находящейся над данной поверхностью в виде пара, действительно достигнет земли? Эффектив­ность процессов образования дождя различна в разных частях земного шара.

В холодных и влажных районах, как, например, на полуострове Аляска, эффективность близка к 100%. С другой стороны, для таких засушливых районов, как штат Аризона, эффективность в течение сезона летних дождей составляет всего около 5%. Если бы удалось уве­личить эффективность даже на очень малую величину, скажем, до 6%, выпадение дождей возросло бы на 20%. К сожалению, пока мы еще не знаем, как этого достичь. Данная задача — проблема преобразования природы, которую ученые всего мира пытаются решить в течение многих лет. Попытки активных воздействий с целью стимулирования процессов образования дождя начались еще в 1946 г., когда Ленгмюр и Шефер показали, что возможно искусственно вызывать осадки из определен­ных типов облаков, засевая их ядрами сухого льда. С тех пор в методах воздействия па облака достигнут опре­деленный прогресс. Однако еще нет достаточных осно­ваний считать, что количество осадков из какой-либо системы облаков может быть искусственно увели­чено.

Основная причина, по которой метеорологи в настоя­щее время еще не могут изменять погоду, заключается в недостаточном знании процессов образования осадков. К сожалению, мы еще не всегда знаем природу образо­вания дождя в различных случаях.

ЛЕТНИЕ ЛИВНИ И ГРОЗЫ

Еще не так давно метеорологи считали, что все осад­ки образуются в виде твердых частиц. Попадая в теплый воздух вблизи поверхности земли, ледяные кристаллы или снежинки тают и превращаются в капли дождя. Та­кое представление основывалось на фундаментальной работе Бержерона, опубликованной им в начале 30-х го­дов. В настоящий момент мы уверены в том, что процесс образования осадков, описанный Бержероном, действи­тельно имеет место в большинстве случаев, но не яв­ляется единственно возможным.

Однако возможен и иной процесс, известный под названием коагуляции. При этом процессе дождевые капли растут за счет их столкновения и слияния с более мелкими облачными частицами. Для образования дождя за счет коагуляции наличие ледяных кристаллов уже необязательно. Напротив, в этом случае должны существо­вать крупные частицы, которые падают быстрее, чем остальные, и производят много соударений.

Радиолокация сыграла важную роль в подтвержде­нии того обстоятельства, что процесс коагуляции в обла­ках конвективного развития протекает весьма эффек­тивно. Конвективные облака, напоминающие цветную капусту, иногда перерастают в грозовые. С помощью радиолокаторов с вертикально сканирующими антеннами можно наблюдать процесс развития таких облаков и от­метить, на каких высотах появляются первые частицы осадков.

Исследование роста области крупных частиц вверх и вниз может быть выполнено только при непрерывном наблюдении за одним и тем же облаком. Таким методом были получены серии наблюдений, одна из которых по­казана на рис. 20. Серия состоит из 11 различных радио­локационных наблюдений, иллюстрированных фотограм­мами с интервалами от 10 до 80 секунд.

Фотограммы развития радиоэха ливневого облака

Как видно из приведенной на рис. 20 серии наблюде­ний, первичное радиоэхо простиралось до высоты около 3000 м, где температура была 10° С. Далее радиоэхо быстро развивалось как вверх, так и вниз. Однако даже тогда, когда оно достигло максимальных размеров, вер­шина его не превышала 6000 м, где температура состав­ляла около 0°С. Очевидно, нет оснований считать, что дождь в этом облаке мог образоваться из ледяных кри­сталлов, так как зона осадков возникла в области поло­жительных температур.

Большое количество подобных радиолокационных наблюдений было произведено в разных районах США, Австралии и Англии. Такие наблюдения позволяют счи­тать, что в образовании ливневых осадков процесс коагу­ляции играет главную роль. Возникает вопрос, почему этот важный факт не был установлен до применения радиолокации. Одна из главных причин, объясняющих это обстоятельство, состоит в том, что невозможно опре­делить, где и когда возникают в облаке первые частицы осадков. Следует заметить, что при выпадении дождя вершина облака может простираться до высоты в не­сколько тысяч метров, достигая области с температура­ми —15° С и ниже, где существует множество ледяных кристаллов. Это обстоятельство и приводило ранее к ошибочному заключению, что ледяные кристаллы яв­ляются источниками осадков.

В настоящее время мы, к сожалению, еще не знаем относительной роли обоих механизмов образования дождя. Более детальное изучение этого вопроса поможет метеорологам успешнее развивать методы искусственного воздействия на облака.

НЕКОТОРЫЕ СВОЙСТВА КОНВЕКТИВНЫХ ОБЛАКОВ

Радиолокационные наблюдения позволили более де­тально исследовать конвективные облака. Применяя раз­личные типы радиолокаторов, исследователи обнаружили, что в ряде случаев отдельные «башни» радиоэхо разви­ваются до очень больших высот. Так, например, в неко­торых случаях облака, имеющие диаметр 2—3 км, про­стираются до 12—13 км.

Мощные грозы обычно развиваются ступенчато. Вна­чале одна из башен радиоэхо растет, достигая высоты около 8000 м, затем снижается. Спустя несколько минут рядом с этой башней начинает вытягиваться вверх дру­гая, которая достигает большей высоты — примерно 12 км. Ступенчатый рост радиоэхо продолжается до тех пор, пока грозовое облако не достигнет стратосферы.

Таким образом, каждая башенка радиоэхо может рассматриваться как отдельный кирпич в общем здании или как единичная ячейка всей системы — грозового об­лака. Существование таких ячеек в грозовом облаке было постулировано в свое время Байерсом и Брехемом на основании результатов анализа большого количества метеорологических наблюдений, проведенных за различ­ными характеристиками гроз. Байерс и Брехем предпо­ложили, что грозовое облако состоит из одной или более таких ячеек, цикл жизни которых весьма непродолжи­телен. В то же время группа английских исследователей во главе со Скорером и Ладламом выдвинула свою тео­рию образования грозы. Они считали, что в каждом гро­зовом облаке есть большие пузыри .воздуха, поднимаю­щиеся от земли в верхние слои. Несмотря на различия в теориях образования грозы, обе эти теории все же предполагают, что развитие грозового облака происхо­дит ступенчато.

Исследования показали, что средние скорости роста башен радиоэхо в конвективных облаках составляют от 5 до 10 м/сек, а в некоторых типах грозовых облаков они могут быть и в два-три раза больше. Ясно, что в этом случае самолеты, попадающие в такие облака, испыты­вают значительную болтанку и перегрузки под действием сильных восходящих потоков и интенсивной турбулент­ности.

Каждому, кто пережидал грозу, известно, что она мо­жет длиться час или более. В то же время жизнь отдель­ной башенки или ячейки весьма коротка: как показывают радиолокационные наблюдения, примерно 23 минуты. Очевидно, что в большом грозовом облаке может быть множество ячеек, развивающихся последовательно одна за другой. В этом случае от момента появления дождя до его окончания может пройти значительно больше вре­мени, чем 23 минуты. В течение грозы, которая может продолжаться и несколько часов, интенсивность дождя не остается постоянной. Напротив, она то достигает максимума, то уменьшается почти до полного исчезнове­ния дождя. Каждое такое увеличение интенсивности дождя соответствует развитию очередной ячейки или башенки. Нетрудно убедиться в вышесказанном самому, если проследить с часами в руках за чередованием мак­симумов и минимумов интенсивности ливневого дождя.

ЗИМНИЕ ОСАДКИ

В теплое время года значительная часть осадков вы­падает из ливневых и грозовых облаков. Отдельные об­лака, простирающиеся до больших высот, дают осадки в виде локальных ливней. В образовании осадков из та­ких облаков важную роль играет процесс коагуляции. Как правило, отдельные облака имеют малые площади поперечного сечения, в них развиваются мощные восхо­дящие и нисходящие потоки, а продолжительность их существования не более часа.

Большинство осадков, выпадающих в. холодное время года, дают облака другого вида. Вместо локальных обла­ков в зимнее время появляются распространяющиеся по огромной площади облачные системы, существующие уже не часы, а дни. Такие облачные системы образуются вследствие очень медленного вертикального перемеще­ния воздуха (со скоростью менее 1 м/сек, в ряде случаев даже 10см/сек.).

Облака, из которых выпадает большая часть осад­ков, называются слоисто-дождевыми. Их форма обус­ловлена медленными, но продолжительными восходя­щими движениями воздуха в циклонах, возникающих в средних широтах и перемещающихся с западными те­чениями. Дожди из таких облачных систем обычно на­зывают обложными дождями. Они более однородны по своей структуре, чем дожди из конвективных облаков. Тем не менее при наблюдении за такими системами с помощью радиолокаторов внутри областей, где следо­вало было ожидать равномерного распределения осад­ков, обнаруживаются участки более высокой интенсив­ности осадков. Такие участки наблюдаются там, где скорости восходящих потоков заметно превышают сред­ние значения.

На рис. 21 приведена фотограмма типичной радиоло­кационной картины зимних осадков. Фотограмма полу­чена в Мак-Джилльском университете (Канада) с по­мощью радиолокатора с неподвижной вертикальной ан­тенной. Такой метод наблюдений давал разрез всей об­лачной системы, которая проходила над станцией. При­веденная фотограмма получалась путем экспонирова­ния пленки, медленно двигавшейся перед экраном инди­катора кругового обзора, на котором была видна одна только вертикальная линия развертки с изменяющейся по высоте яркостью в тех местах, где отмечалось радиоэхо. Таким образом, результирующая картина радиоэхо на фотограмме может рассматриваться как сумма мгно­венных картин, состоящая из множества близко рас­положенных вертикальных линий.

Фотограмма пространственно-временного разреза облачной системы

На фотограмме можно заметить, что на высоте бо­лее 2500 м наблюдаются наклонные стримеры, перехо­дящие в вертикальные и правильно расположенные яркие ячейки. Группа исследователей изМак-Джилльского университета, возглавлявшаяся Маршаллом, предполо­жила, что яркие ячейки представляют собой области, в ко­торых образуются кристаллы льда, а наклонные стри­меры — полосы падения осадков.

Если скорость ветра с высотой не меняется, то и ско­рость падения частиц осадков тоже постоянна. В этом случае нетрудно вывести простое соотношение, описываю­щее траекторию падения частиц. Для расчетов скоростей выпадения частиц Маршалл использовал метод наблю­дений с регистрацией картины радиоэхо на медленно движущуюся пленку. Проанализировав один из наиболее четко зафиксированных случаев и определив, что сред­няя скорость падения частиц составляла около 1,3 м/сек, Маршалл предположил, что частицы представляют собой конгломераты ледяных кристаллов.

При исследовании яркой линии радиоэхо (на фото­грамме это полоса на высоте около 2000 м) становится очевидным, что зародившиеся частицы осадков, по край­ней мере в большей своей части, являются твердыми. Яркая полоса возникает несколько ниже уровня таяния, вблизи изотермы 0°С. Явление яркой полосы радиоэхо на фотограммах зимних осадков отмечалось многими исследователями и было детально изучено в последнее время.

Первым, кто дал удовлетворительное объяснение этому явлению, был Райд. Его гипотеза, разработанная в 1946 г., до сих пор считается правильной; позднее в нее другими исследователями были внесены некоторые уточ­нения.

Райд первым показал, что в том случае, когда раз­меры отражающих частиц много меньше длины волны, их отражательная способность в жидком состоянии при­мерно в пять раз выше, чем в твердом. Резкое возра­стание интенсивности радиоэхо ниже уровня нуле­вой изотермы происходит вследствие быстрого таяния падающих твердых частиц. Растаяв, частицы быстро пре­вращаются в сферические водяные капли, которые па­дают быстрее, чем снежинки. Увеличение скорости паде­ния частиц ниже изотермы 0°С и связанное с ним умень­шение их числа в единице объема воздуха, а следова­тельно, и внутри объема, освещенного лучом радиолока­тора, приводят к уменьшению интенсивности радиоэхо ниже слоя таяния. На рис. 21 видно, что полосы радио­эхо, расположенные ниже яркой линии, идут несколько круче, чем полосы радиоэхо, расположенные над ней. Большая крутизна полос падения в области ниже уровня таяния свидетельствует о том, что здесь частицы падают быстрее.

На основе анализа подобных наблюдений можно сде­лать вывод, что дожди, выпадающие из некоторых форм зимних облаков, возникают при очень низких темпера­турах. Даже в совершенно изолированных облаках об­разуются ледяные кристаллы, которые могут расти и увеличиваться в размерах до тех пор, пока не будут выпадать. При столкновении кристаллы объединяются в снежинки, которые движутся то траектории, определяе­мой их скоростями падения и ветром. Проникая в ниж­ние слои, снежинки могут попасть в облака, состоящие из маленьких переохлажденных капель, и продолжать свой рост за счет столкновения с ними. Сами по себе та­кие облака не могут быть обнаружены большинством современных радиолокаторов из-за малого размера ка­пель. Как только твердые частицы проходят уровень ну­левой изотермы, они быстро тают и увеличивают скорость своего падения. При попадании таких частиц в об­лака нижнего яруса они продолжают свой рост за счет столкновений и слияний с облачными каплями. Если температура у поверхности земли ниже 0°С, частицы осадков так и останутся в форме снежинок.

Однако не у всех широко распространенных систем облаков наблюдаются ясно выраженные стримеры выше уровня замерзания, подобные приведенным на рис. 22. В ряде случаев облака создают только отчетливые и яркие полосы радиоэхо, выше которых отсутствуют за­метные отражения. Такая картина, вероятно, возникает из-за того, что кристаллы льда, находящиеся выше яркой полосы, слишком малы, чтобы создать обнаруживаемое радиоэхо. При попадании таких кристаллов в область таяния увеличение их отражаемости происходит как за счет изменения фазового состояния, так и за счет даль­нейшего роста их размеров благодаря слиянию с более мелкими каплями.

Фотограмма радиоэхо грозы

Радиолокационные наблюдения привели к ряду важ­ных выводов. Было твердо установлено, что дождь, выпа­дающий из большинства облаков зимних форм и дости­гающий поверхности земли, образуется на больших вы­сотах в форме кристаллов льда. С другой стороны, вы­падение дождя из конвективных облаков зачастую про­исходит и при отсутствии ледяных кристаллов.

Когда исследователям удастся установить роль твердой фазы и процесса коагуляции в образовании осад­ков из данного типа облаков, появится реальная воз­можность активно воздействовать на них с целью искус­ственного вызывания осадков. Нет сомнения в том, что рано или поздно человек научится управлять облаками. Метеорологи всего мира объединяют свои усилия, чтобы ускорить решение этой задачи. Научившись управлять процессом осадкообразования, они смогут внести свой вклад в разрешение проблемы мировых водных ресурсов. Можно надеяться, что, когда появится возможность ис­кусственного регулирования осадков, будут найдены средства более эффективного их использования.

Под воздействием солнечного тепла вода с поверхности озер, рек, морей, океанов и ручьев испаряется, превращаясь в пар. Пар очень легкий, он поднимается вверх, в воздух, где мельчайшие водяные капельки собираются в облака и тучи. Водяные капельки столь малы, что парят в воздухе. Если становится теплее, облако может совсем исчезнуть, раствориться — капельки испаряются и делаются невидимыми. Если же холодает, капельки сливаются — сотни тысяч их образуют одну полновесную каплю. Такие капли становятся уже слишком тяжелыми для того, чтобы продолжать свое парение в небе, они падают на землю — идет дождь.


Дождь идет, когда маленькие капельки воды, собранные в облаке, слипаются и увеличиваются. Если воздух больше не может их удерживать, они падают на землю в виде дождя.

Ветер разносит тучи над землей, и они проливают на нее живительную влагу. Ведь без дождя не будут расти деревья, цветы, травы.

Мы и сами можем вызвать «дождь». Наполним кубиками льда кастрюльку с ручкой и подержим ее над большой кастрюлей с кипящей водой (будьте осторожны, не ошпарьтесь!). Что же произойдет? Очень влажный, горячий воздух, насыщенный паром, поднимается вверх и нагревает стенки охлажденной льдом кастрюльки. Пар этот конденсируется, оседая на стенках кастрюльки, спивается в большие капли и стекает вниз. Идет дождь!

См. также:
Что такое снег?
Откуда берется град?
Где чаще всего бывают грозы?

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *