Каменный уголь

Город призрак без угля. Таковым стал японский Хасима. В 1930-е его признали самым густонаселенным. На крошечном клочке земли уместились 5 000 человек. Все они работали на угольном производстве.

Остров оказался буквально сложенным из каменного источника энергии. Однако, к 1970-ым запасы угля истощились.


Уехали все. Остался лишь перерытый остров и постройки на нем. Туристы и японцы зовут Хасиму призраком. Остров наглядно показывает важность каменного угля, невозможность человечества жить без него. Альтернативы нет.

Есть только попытки ее найти. Поэтому, уделим внимание современному герою, а не туманным перспективам.

Описание и свойства

Каменный уголь – это горная порода органического происхождения. Это значит, что камень образован из разложившихся остатков растений, животных. Чтобы они сформировали плотную толщу, требуется постоянное накопление и спрессовывание.

Подходящие условия на дне водоемов. Там, где есть месторождения каменного угля, когда-то были моря, озера. Отмершие организмы опускались на дно, придавливались толщей воды. Так образовывался торф. Каменный уголь – последствие его дальнейшего сжатия под давлением уже не только воды, но и новых слоев органики.

Основные запасы каменного угля относятся к эре Палеозоя. С ее окончания минуло 280 000 000 лет. Это эра гигантских растений и динозавров, обилия жизни на планете. Не удивительно, что именно тогда органические отложения накапливались особенно активно.

Чаще всего, уголь образовывался в болотах. В их водах мало кислорода, что препятствует полному разложению органики.

Внешне залежи каменного угля напоминают обгоревшую древесину. По химическому составу порода является смесью углеродных ароматических соединений высокомолекулярного типа и летучих веществ с водой.

Минеральные примеси незначительны. Соотношение компонентов не стабильно. В зависимости от преобладания тех, или иных элементов, выделяют виды каменного угля. К основным относится бурый и антрацитовый.

Бурая разновидность угля насыщенна водой, а посему, отличается низкой теплотой сгорания. Получается, в качестве топлива порода не годиться, как каменная. И бурый уголь нашел иное применение. Какое?

Этому будет уделено отдельное внимание. Пока же, разберемся, почему водонасыщенную породу зовут бурой. Причина в цвете.

Уголь коричневатый, без блеска, рыхлый. С геологической точки зрения массу можно назвать молодой. То есть, в ней не завершены процессы «брожения». Поэтому, у камня низкая плотность, при сгорании образуется много летучих веществ.

Ископаемый каменный уголь антрацитового типа – полностью сформировался. Он плотнее, тверже, чернее, блестит. Чтобы бурая порода стала такой, требуются 40 000 000 лет. В антраците велика доля углерода – около 98%.

Естественно, что теплоотдача у черного угля на высоте, а значит, камень можно использовать в качестве топлива.

Образования каменного угля чаще всего находятся в болоте

Бурый вид в этой роли используют лишь для обогрева частных домов. Им не нужны рекордные показатели энергии.

Нужна лишь простота обращения с топливом, а антрацит в этом плане проблематичен. Разжечь черный каменный уголь непросто. Производственники, железнодорожники, приноровились. Трудозатраты стоят того, ведь антрацит не только энергоемок, но и не спекается.

Каменный уголь – топливо, от сгорания которого остается зола. Из чего она, если органика переходит в энергию? Помните заметку о минеральной примеси? Именно неорганическая составляющая камня и остается на дне печей.

Немало золы осталось и на китайском месторождении в провинции Люхуангоу. Залежи антрацита там горели без малого 130 лет. Пожар потушили лишь в 2004-ом году. Каждый год сгорали 2 000 000 тонн породы.

Вот и посчитайте, сколько каменного угля пропало даром. Сырье могло пригодиться не только в качестве топлива.

Применение каменного угля

Уголь называют солнечной энергией, заключенной в камень. Энергию можно преобразовывать. Она не обязательно должна быть тепловой.

Энергию, получаемую при сгорании породы, переводят, к примеру, в электричество. Температура сгорания каменного угля бурого типа чуть не доходит до 2 000 градусов. Дабы получить электричество из антрацита, потребуется уже около 3 000 по шкале Цельсия.

Каменный уголь применяют в качестве топлива

Если же говорить о топливной роли угля, он используется не только в чистом виде.

В лабораториях из органической породы научились получать жидкое и газообразное топливо, а на металлургических заводах уже давно пользуются коксом.

Он получается при нагреве каменного угля до 1 100 градусов без доступа кислорода. Кокс – бездымное топливо. Важна для металлургов и возможность применения брикетов в роли восстановителей железной руды. Так, кокс пригождается при отливке чугуна.

Кокс применяют и в качестве разрыхлителя шихты. Так именуют смесь исходных элементов будущего сплава. Будучи разрыхленной коксом, шихта легче переплавляется. Кстати, некоторые компоненты для сплавов тоже получают из антрацита.

В качестве примесей в нем могут содержаться германий и галлий – металлы редкие и мало где еще встречающиеся.

Купить уголь стремятся, так же, для производства композиционных материалов углеграфитового толка. Композитами называют массы из нескольких составляющих, с четкой границей между ними.

Искусственно созданные материалы применяют, к примеру, в авиации. Здесь композиты увеличивают прочность деталей.

Карбоновые массы выдерживают, как очень высокие, так и низкие температуры, используются в стойках опоры контактных сетей.

А вообще, композиты прочно вошли уже во все сферы жизни. Железнодорожники устилают ими новые платформы.

Из наномодифицированного сырья делают опоры строительных конструкций. В медицине с помощью композитов предлагают заполнять сколы на костях и прочие повреждения, не подлежащие металлическому протезированию. Вот какой каменный уголь многоликий и многофункциональный.

Химики разработали метод получения из угля пластмасс. При этом, не пропадают отходы. Низкосортная фракция прессуется в брикеты.

Они служат топливом, которое подходит, как для частных домов, так и производственных цехов. В топливных брикетах остается минимум углеводородов. Они, собственно, и есть самок ценное в угле.

Из него можно получить чистые бензол, толуол, ксилолы, куморановые смолы. Последние, к примеру, служат основой для лакокрасочной продукции и такого материала внутренней отделки помещений, как линолеум.

Часть углеводородов ароматические. Людям знаком запах нафталина. Но, немногие знают, что производят его из каменного угля.

В хирургии нафталин служит антисептиком. В домашнем хозяйстве вещество борется с молью. Кроме того, нафталин способен защитить от укусов ряда насекомых. Среди них: мухи, оводы, слепни.

В общей сложности, уголь каменный в мешках закупают для производства более чем 400-от видов продукции.

Многие из них – побочные товары, получаемые на коксохимическом производстве. Интересно, что стоимость дополнительных линий, как правило, больше, чем у кокса.

Если же рассматривать среднюю разницу между каменным углем и товарами из него, она составляет 20-25 раз.

То есть, производство весьма выгодное, быстро окупается. Поэтому, неудивительно, что ученые ищут все новые и новые технологии переработки осадочной породы. На растущий спрос должно быть предложение. Ознакомимся с ним.

Добыча каменного угля

Месторождения угля называют бассейнами. В мире их свыше 3 500. Общая площадь бассейнов – около 15% от суши. Больше всего угля в США.

Там сосредоточенны 23% от мировых запасов. Каменный уголь в России – это 13% общих запасов. Бронза у Китая. В его недрах сокрыто 11% породы.

Большинство из них – антрациты. В России соотношение бурого угля к черному примерно одинаково. В США преобладает бурый вид породы, что снижает значение залежей. Не смотря на обилие бурого угля, месторождения США поражают не только объемами, но и масштабами.

Запасы одного только Аппалачского каменноугольного бассейна составляют 1 600 миллиардов тонн. В самом крупном бассейне России, для сравнения, хранятся лишь 640 миллиардов тонн породы. Речь о Кузнецком месторождении.

Оно находится в Кемеровской области. Еще пара перспективных бассейнов обнаружены в Якутии и Тыве. В первом регионе залежи назвали Эльгинскими, а во втором – Элегетскими. Месторождения Якутии и Тывы относятся к закрытому типу. То есть, порода находиться не у поверхности, на глубине.

Нужно строить шахты, штольни, стволы. Это поднимает цену каменного угля. Но, масштабы залежей стоят затрат. Что же касается Кузнецкого бассейна, в нем работают по смешенной системе. Около 70% сырья извлекают с глубин гидравлическим способом.

30% угля добывают открыто, используя бульдозеры. Их достаточно, если порода залегает у поверхности, а прикрывающие слои рыхлые.

Открыто уголь добывают и в Китае. Большинство месторождений КНР находятся далеко за пределами городов. Однако, это не помешало одной из залежей доставить неудобства населению страны. Это произошло в 2010-ом.

Пекин резко увеличил запросы на уголь из Внутренней Монголии. Она считается провинцией КНР. В путь отправилось столько грузовиков с товаром, что 110-е шоссе встало почти на 10 дней. Пробка началась 14-го августа, а рассосалась лишь 25-го.

Правда, не обошлось и без проведения дорожных работ. Грузовики с углем усугубили ситуацию. 110-е шоссе относится к дорогам государственного значения. Так что, не только уголь в пути задержался, но и прочие контракты оказались под угрозой.

В интернете можно найти ролики, где водители, ехавшие в августе 2010-го по китайскому шоссе, сообщают, что 100-километровый отрезок преодолевали около 5-ти дней.

Уголь — это один из самых древних видов топлива, известных человеку. И даже сегодня он занимает лидирующие позиции по объему использования. Причиной тому служит его распространенность, легкость добычи, переработки и использования. Но что он собой представляет? Какова химическая формула угля?

На самом деле данный вопрос не совсем корректен. Уголь — это не вещество, это смесь различных веществ. Их целое множество, поэтому полностью определить состав угля невозможно. Поэтому под химической формулой угля в этой статье мы будем подразумевать скорее его элементный состав и некоторые другие особенности.

Вам будет интересно:Логопедический кабинет: оформление своими руками

Но что мы можем узнать о состоянии этого вещества? Уголь образуется из останков растений в течение многих лет вследствие воздействия большой температуры и давления. А так как растения имеют органическую природу, то и в составе угля будут преобладать органические вещества.

В зависимости от возраста и иных условий происхождения угля его делят на несколько видов. Каждый вид отличается элементарным составом, наличием примесей и другими немаловажными характеристиками.

Бурый уголь

Является самым молодым видом угля. В нем даже наблюдается растительная древесная структура. Образуется напрямую из торфа на глубине порядка 1 километра.

Этот вид угля содержит достаточно большое количество влаги: от 20 до 40%. При попадании на воздух она испаряется, а уголь рассыпается в порошок. Далее речь пойдет о химическом составе именно этого сухого остатка. Количество неорганических примесей в буром угле также велико и составляет 20-45%. В качестве этих примесей выступают диоксид кремния, оксиды алюминия, кальция и железа. Также в нем могут содержаться оксиды щелочных металлов.

Много в этом угле и летучих органических и неорганических веществ. Они могут составлять до половины массы этого вида угля. Элементарный состав за вычетом неорганических и летучих веществ следующий:

  • Углерод 50-75%.
  • Кислород 26-37%.
  • Водород 3-5%.
  • Азот 0-2%.
  • Сера 0,5-3%.

Каменный уголь

По времени образования этот вид угля идет следующим после бурого. Он имеет черный или серо-черный цвет, а также смоляной, иногда металлический блеск.

Влажность каменного угля значительно меньше бурого: всего 1-12%. Содержание летучих веществ в каменном угле очень колеблется в зависимости от места добычи. Оно может быть минимальным (от 2%), но может и достигать значений, аналогичных бурому углю (до 48%). Элементарный состав следующий:

  • Углерод 75-92%.
  • Водород 2,5-5,7%.
  • Кислород 1,5-15%.
  • Азот до 2,7%.
  • Сера 0-4%.

Отсюда можно сделать вывод, что химическая формула угля каменного состоит из большего числа углерода, чем у бурого. Это делает данный вид угля более качественным топливом.

Антрацит

Антрацит — это самая древняя форма ископаемого угля. Ему присущ темно-черный цвет, и он имеет характерный металлический блеск. Это самый лучший уголь по количеству тепла, которое он выделяет при горении.

Количество влаги и летучих веществ в нем очень мало. Около 5-7% на каждый показатель. А элементарный состав характеризуется крайне высоким содержанием углерода:

  • Углерод более 90%.
  • Водород 1-3%.
  • Кислород 1-1,5%.
  • Азот 1-1,5%.
  • Сера до 0,8%.

Больше угля содержится лишь в графите, который является дальнейшей стадией углефикации антрацита.

Древесный уголь

Этот тип угля не является ископаемым, поэтому он имеет некоторые особенности своего состава. Производят его путем нагрева сухой древесины до температуры 450-500 oC без доступа воздуха. Этот процесс называют пиролизом. В ходе него из древесины выделяется ряд веществ: метанол, ацетон, уксусная кислота и другие, после чего она превращается в уголь. Кстати, горение древесины — это тоже пиролиз, но из-за наличия кислорода воздуха загораются выделяющиеся газы. Именно этим и обуславливается наличие языков пламени при горении.

Древесина не является однородной, в ней очень много пор и капилляров. Подобная структура отчасти сохраняется и полученном из нее угле. По этой причине он обладает хорошей адсорбционной способностью и применяется наряду с активированным углем.

Влажность этого типа угля совсем небольшая (около 3%), но при длительном хранении он поглощает влагу из воздуха и процентное содержание воды повышается до 7-15%. Содержание неорганических примесей и летучих веществ регламентируется ГОСТами и должно составлять не более 3% и 20% соответственно. Элементный состав зависит от технологии получения, и примерно выглядит так:

  • Углерод 80-92%.
  • Кислород 5-15%.
  • Водород 4-5%.
  • Азот ~0%.
  • Сера ~0%.

Химическая формула угля древесного показывает, что по содержанию углерода он близок к каменному, но вдобавок имеет лишь незначительное количество ненужных для горения элементов (серы и азота).

Активированный уголь

Активированный уголь — это тип угля с высокой удельной поверхностью пор, из-за чего он обладает даже большей адсорбционной способностью, чем древесный. В качестве сырья для его получения используются древесный и каменный угли, а также скорлупа кокосовых орехов. Исходный материал подвергают процессу активации. Суть его состоит в том, чтобы вскрыть закупоренные поры действием высокой температуры, растворами электролитов или водяным паром.

В ходе процесса активации меняется лишь структура вещества, поэтому химическая формула активированного угля идентична составу сырья, из которого тот был изготовлен. Влажность активированного угля зависит от удельной поверхности пор и обычно составляет менее 12%.

Молодо-зелено. Иносказательное выражение не подходит бурому углю. Геологи причисляют его к молодым породам. Бурому углю на Земле примерно 50 000 000 лет. Соответственно, порода формировалась в Третичный период.

В него входят эры Палеогена и Неогена. Иначе говоря, бурый уголь формировался, когда по планете уже ходили первые люди. Однако, не смотря на свою молодость, порода вовсе не зелена. Ее цвет понятен из названия. Чем обусловлена бурая краска, разберемся ниже.

Свойства бурого угля

Цвет бурого угля обусловлен его основой. Это растительная масса, в основном, древесина. Она отчетливо видна в лингитах. Ряд геологов считают их отдельной породой, а прочие причисляют к разновидности бурого угля. В России придерживаются последней точки зрения.

Как бы ни было, уголь – это разложившаяся растительность. В эпохи, когда она была буйной, а стволы деревьев гигантскими, она оседала на дне болот. Там, в условиях дефицита кислорода, органика начинала разлагаться. Так вот в лингитах процесс на начальной стадии, еще можно увидеть куски древесины. Она тленна, но структура волокон прослеживается.

Классический бурый уголь – однородная масса. В нем уже трудно различить древесные волокна. Однако, до состояния чистого углерода органика еще не распалась. Поэтому, сохраняется коричневый цвет массы.

Присутствие в ней крупных частиц обуславливает рыхлость ископаемого. На кубический сантиметр породы приходится только 1 грамм массы. Углеводов в нем не более 60-ти процентов, а зачастую – всего половина.

И плотность, и насыщение породы углеводородами отвечают за энергоемкость. Бурый уголь – топливо низшей категории. Используют его, как правило, в подсобном хозяйстве. Промышленникам нужно энергоемкое топливо, сгорающее почти на 100%. После же сжигания героя статьи остается много золы.

Использование бурого угля – это оседание копоти на дымоходе, языки пламени, едкий дым. Розжиг облегчают летучие вещества, коих в буром угле около 10%. Еще 30% приходятся на воду, азот, кислород, серу. Для топлива все это лишнее.

Характеристика бурого угля на срезе – «подобие кому земли». Однако, такой породу делает присутствие воды. Стоит ей испариться, ископаемое рассыпается в пыль. Иначе говоря, не хватает вязких углеводородов, которые бы цементировали частицы породы.

Промышленники спрессовывают их. Без воды применение бурого угля немногим эффективнее. В обычном же виде сгорание 1-го килограмма породы дает не более 10 000 килокалорий. Средний показатель – 5 500 килокалорий.

Чем бурый уголь отличается от каменного?

Если максимальный возраст бурого угля 50 000 000, то каменного – 350 000 000 лет. Говоря иначе, самые древние образцы каменной породы образовались еще в Девонский период. Растительность тогда представляли, в основном, гигантские хвощи, а животные еще скрывались в морях.

До 21-го века оставалось 9 геологических эр. За них растительные остатки разложились и спрессовались так сильно, что превратились в реальный камень. Нет и следа от рассыпчатости бурого угля. Каменный вариант породы — реально камень.

На фото бурый уголь

Коричневый цвет древесины в каменном угле заменен на насыщенно-черный. Это краска углеводородов 1-го сорта. Их в породе чуть ли не 100%. Правда, это касается антрацита – последней стадии развития каменного угля. В обычном углеводородов от 72-ух до 90-та процентов.

Массу примесей можно определить на взгляд. Антрацит, к примеру, на разломе блестит. Это сияние так и именуют – угольный блеск. Примеси матируют породу. Запасы бурого угля, соответственно, всегда матовые. В противовес их 10 000 килокалорий на килограмм сгоревшего топлива приходятся 61 000. Таков показатель каменного угля.

Добыча бурого угля ведется с глубин примерно до километра. Со времен Девона наслоилась большая масса земли. Соответственно, каменный вариант породы извлекают с глубин около 3-ех километров.

Благодаря малому количеству примесей, каменный уголь сгорает почти без остатка, дает минимум копоти, не горит в привычном смысле. Выраженных языков пламени нет. Однако, ресурсов на разогрев плотного камня уходит больше, чем на поджог рыхлой бурой массы.

Это еще одна причина использования черной породы лишь промышленниками. У них есть печи, способные держать нужную температуру. Сжигание же бурого угля напоминает работу с сырыми дровами.

Месторождения и добыча бурого угля

Месторождения бурого угля на километровой глубине относятся к самым старым в классе, тем самым, которым 50 000 000 лет. Основные залежи еще юнее, следовательно, располагаются выше.

В России, к примеру, большинство пластов бурого угля находятся в 10-60-ти метрах от поверхности. Это располагает к открытой добыче ископаемого. Этим способом извлекают 2/3 отечественных запасов угля.

Они, кстати, распределены неравномерно. 60% приходятся на Сибирь. «Солтомское» месторождение, к примеру, разрабатывают на Алтае. Запасы породы составляют 250 000 000 тонн. Есть бурый уголь и в «Канско-Ачинском» бассейне.

Добыча бурого угля

Бассейнами залежи породы называют из-за ее «разлива» под землей. Уголь – это не жилы среди прочих пород и не компактные агрегаты, а обширные «блины». Они простираются на десятки и сотни километров. Так, в «Канско-Ачинском» бассейне только поверхностные запасы сосредоточены на площади в 45 000 квадратных километров.

В Сибири находится и бассейн бурого угля «Ленский» Его разрабатывают на территории Якутии. Затрагивает месторождение и Красноярский край. Общая площадь залежей – 750 000 квадратных километров. В них входит больше 2 000 000 000 000 тонн. Кто запутался в нолях, речь о триллионах.

Купить бурый уголь с «Ленского» месторождения, не смотря на его обширность, дороже, чем с «Канско-Ачинского» или «Солтомского». Причина – сложности залегания породы в Якутии.

«Блин» ископаемого местами разорван и смят, то опускается под землю, то поднимается к поверхности. Последние участки, в большинстве, уже разработаны. Добыча из глубин затратней, что влияет на конечную цену породы.

На западе страны бурый уголь добывают в «Подмосковном» бассейне. В нем есть и каменная разновидность породы. Собственно, месторождение начало образовываться в Каменноугольном периоде. Он относится к Палеозойской эре. Судя по ее древности, бурой породы в бассейне быть не должно. Однако, что-то затормозило разложение части пластов.

На западе России расположился и «Печерский» бассейн угля. Его северное расположение затрудняет добычу ископаемого. К тому же, оно располагается на глубине в сотни метров. Приходится рыть шахты. Поэтому, из недр извлекают энергетические виды угля. Залежи бурого обходят стороной.

К перспективным месторождениям угля на севере России относят, так же, «Таймырское». Из названия понятно, что располагаются залижи на морской границе Красноярского края.

Месторождение бурого угля

Пока, в этом районе ведется геологоразведка. Добыча ископаемого откладывается. Придется вновь прибегать к шахтам. Пока, не истощились открытые запасы породы.

Из общего числа месторождений угля в мире активно разрабатывают около 50-ти. Многие залежи остаются про запас и в России. Она, кстати, в лидерах добычи угля, но не на первом месте. Его заняли США. К угольнодобывающим там относятся штаты Техас, Пенсильвания, Алабама, Колорадо и Иллинойс.

У России по добыче каменного угля, куда включают и бурую породу, 2-е место в мире. Обычно, приводят десятку лидеров, замыкает которую Монголия. Но, укажем и бронзу. Она досталась КНР. Там разрабатывают бассейн «Шаньсина». Он занимает почти всю Великую китайскую равнину, заходя в Янцзы и Датун.

Применение бурого угля

Применение бурого угля зависит от его вида. Геологи выделяют 5. Первый — «Плотны». Он наиболее ценен, граничит с каменным. Это темная, однородная, утрамбованная порода.

В ней максимальное для бурого угля количество углеводородов. Как и каменный вариант, «Плотное» ископаемое блестит, но не выражено. Такое топливо готовы использовать не только частники, но и мелкие котельные.

Второй вид бурого угля – «Землистый». Эта порода легко стирается в порошок. Сырье подходит для полукоксования. Так именуют переработку в вакууме при температуре около 500-от градусов Цельсия. Получается полукокс. Он хорошо горит, не дает дыма, а посему, используется и в быту, и в промышленности.

Третий вид бурого угля – «Смолистый». Он плотный и темный. Вместо антрацитового блеска присутствует смолистый. Такую породу перегоняют до жидкого углеводородного топлива и газа, как и торфяной уголь.

Последний немногим отличается от обычного торфа. С ним уголь, собственно, родственник. Обе субстанции являются продуктами разложения растительной органики. Считается, что торф – первая стадия, а угли, начиная с бурого, — последующие.

Остается упомянуть 5-ый вид бурого угля – «Бумажный». Его еще именуют «Дизодилом». Порода является истлевшей растительной массой. В ней еще четко просматриваются слои.

На фото горение бурого угля

«Дизодил» можно разобрать по ним, словно слюду. Такой уголь, как правило, не находит применения. Остальные же виды – топливо в том или ином виде. Качественный бензин, к примеру, из героя статьи получают путем гидрогенизации.

Начинается переработка бурого угля со смешения породы с тяжелыми маслами. В присутствии катализатора смесь соединяют с водородом. Для этого нужен нагрев до 450-ти градусов Цельсия. На выходе получают не только жидкое топливо, но и газ. Он является синтетическим аналогом природного.

Напоследок заметим родство угля с перегноем. Кто знаем, что будет с компостной кучей, оставь ее закрытой на миллионы лет … В общем, в буром угле, как и в прочей перегнившей растительности, много гуминовых кислот.

Они полезны растениям, вызывают бурный рост и плодоношение. Поэтому, некоторые виды героя статьи используют в удобрениях. Как правило, в них уголь смешивают с биогумусом.

Пропорции одинаковы. Обязательное условие – измельчение бурой породы. Фракция угля не должна превышать 5 миллиметров. Предпочтительны частицы в 0,001 миллиметр.

Цена бурого угля

В промышленных масштабах на бурый уголь цена держится в пределах 900 — 1 400-от рублей за тонну. Для сравнения, за 1 000 килограммов каменного угля при оптовых закупках просят не менее 1 800 рублей.

Обычно, ценник составляет около 2 500. Максимум в 4 000 рублей за тонну просят за антрацит. Однако, как и на любом рынке, встречаются заоблачные и весьма скромные предложения.

Килограммами, к примеру, бурый уголь могут продавать по 350 рублей. Предложение рассчитано на садоводов. Подготавливая рассаду к дачному сезону, они не видят разницы с ценниками за удобрения из магазинов, напротив, усматривают выгоду.

Отчасти, ценник на бурый уголь, как и прочие, зависит от фракции. Крупные «булыжники» стоят дешевле. Угольная пыль неудобна в обращении, а посему, тоже доступна. Наиболее ценится порода средней фракции.

Влияет на стоимость, как уже говорилось, и наименование месторождения. Промышленники знают, откуда ждать качественный товар, а откуда второсортный, учитывают нюансы состава породы в разных залежах.

Транспортировка бурого угля

Упоминалось и то, что в ценообразовании участвует способ добычи угля. Содержать шахты – дело затратное. Кстати, первая угольная шахта организована в Голландии. Удивляет дата – 1 113-ый год.

Так что, угольная промышленность процветала и в Средние века. Более того, герой статьи и его «собратья» признаны первым видом ископаемого топлива, которым стал пользоваться человек.

Впереди, по подсчетам ученых, еще 500 лет. На больший срок разведанных запасов угля не хватит. Так что, неудивительны активные попытки найти альтернативные углеводородам источники топлива.

Растения не успевают перегнивать с той скоростью, с которой пользуется героем статьи человечество. К тому же, в последние геологические эры климат планеты изменился, углеобразование резко замедлилось.

  • Авторы
  • Резюме
  • Файлы
  • Ключевые слова
  • Литература

Москаленко Т.В. 1 Михеев В.А. 1 Ворсина Е.В. 1 1 ФГБУН «Институт горного дела Севера им. Н.В. Черского» Сибирского отделения Российской академии наук Статья посвящена вопросам установления связи между структурой и свойствами углей, что является актуальной проблемой углехимии. Физико-химические свойства ископаемых углей определяются свойствами его органической массы. Изучение строения и структуры углей необходимо не только для того, чтобы знать, как их использовать и во что перерабатывать, но и для того, чтобы знать, как перерабатывать угли, какие условия переработки задавать для конкретных технологических процессов. Изучение строения и структуры угля необходимо не только для определения направлений его использования и переработки, но и для установления этапов, реагентов и наиболее рациональных режимных параметров технологического процесса переработки сырья в определенный готовый продукт. Показано, что такая характеристика, как «молекулярная масса» угля, достаточно хорошо отражает степень метаморфизма, а также является определяющей для изучения состава и строения угольного сырья. Приведены методики расчета молекулярной массы на 100 атомов углерода или на 100 атомов органической массы угля, что зависит от принятой к рассмотрению среднестатистической структурной единицы. Для обширной базы бурых и каменных углей России различных марок, а также для антрацита, древесины и торфа определен исследуемый показатель, и расчет показал, что молекулярная масса среднестатистической структурной единицы, содержащей 100 атомов углерода, при переходе от низких к высоким стадиям метаморфизма монотонно снижается. По результатом расчетов наглядно показано, что молекулярная масса на 100 атомов углерода имеет меньший разброс на графике по сравнению с точками, отражающими молекулярную массу на 100 атомов органической массы угля. В результате проведенной математической обработки данных была получена математическая модель, которая может являться рабочим теоретическим инструментом изучения структуры твердых горючих ископаемых, определения направлений и условий переработки угля при исследованиях углехимической направленности. 412 KB твердые горючие ископаемые уголь строение угля органическая масса углей молекулярная масса углерод структурные показатели 1. Гюльмалиев А.М., Гагарин С.Г. Молекулярное моделирование структуры и свойств органической массы углей // Химия твердого топлива. 2010. № 3. С. 16–26. 2. Москаленко Т.В., Михеев В.А. Математическое моделирование электронной структуры углей // Вестник ИрГТУ. 2014. № 6. С. 158–160. 3. Москаленко Т.В., Михеев В.А., Данилов О.С. Модель взаимосвязи генетических и технологических параметров углей, принятых в классификации, со структурными параметрами их органической массы // Кокс и химия. 2010. № 1. С. 8–13. 4. Москаленко Т.В., Данилов О.С., Михеев В.А., Леонов А.М. Молекулярная и электронная структура углей в эмпирических уравнениях // Перспективы развития горно-транспортных машин и оборудования: сб. ст.; Горный информ.-аналит. бюллетень (научно-технический журнал). 2009. Отдельный выпуск № 10. С. 391–398. 5. Гагарин С.Г. Оценка молекулярных моделей органического вещества углей по критерию показателя отражения (Обзор) // Кокс и химия. 2012. № 11. С. 10–18. 6. Угольная база России. Том II. Угольные бассейны и месторождения Западной Сибири. М.: ООО «Геоинформцентр», 2003. 604 с. 7. Угольная база России. Том IV. Угольные бассейны и месторождения Восточной Сибири. М.: ЗАО «Геоинформмарк», 2001. 493 с. 8. Мучник Д.А., Загайнов В.С. Аналитические исследования технологического процесса стабилизации кокса и его эффективности (Сообщение 1) // Кокс и химия. 2012. № 6. С. 9–18. 9. Скрипченко Г.Б. Методология изучения молекулярной и надмолекулярной структуры углей и углеродных материалов // Химия твердого топлива. 2009. № 6. С. 7–15. 10. Балаева Я.С., Мирошниченко Д.В., Кафтан Ю.С. Прогноз классификации показателей углей. Сообщение 3. Высшая теплота сгорания на сухое беззольное состояние // Кокс и химия. 2016. № 4. С. 2–9.

Сложный состав ископаемых углей характеризуется тремя основными составными частями: органической массой, минеральными компонентами и влагой . Соотношение этих макросоставляющих является индивидуальным для углей каждого месторождения или даже его участка.

Органическая масса, содержание минеральных компонентов и влага находятся в тесной взаимосвязи между собой и являются основой определения свойств ископаемых углей при оценке их качества. Так, влага в угле влияет на поверхностные характеристики и реакционную способность органической массы. Минеральные компоненты имеют существенное влияние как при горении твердых горючих ископаемых, так и в процессах переработки. Но основные физико-химические и химико-технологические свойства углей характеризует именно органическая масса, состав и содержание которой обуславливает принадлежность угля к определенной технологической марке и, соответственно, наиболее рациональное его использование. Знание физико-химических свойств углей различной степени метаморфизма позволяет обосновать как соответствие качества сырья технологическим процессам по направлению его применения, так и оптимальные режимные параметры его переработки в готовый продукт . В связи с этим возникает необходимость в установлении связи между структурой углей и их свойствами. Это – одна из основных задач углехимии.

Цель исследования: установление взаимосвязи структуры и свойств органической массы угля должно основываться на результатах фундаментальных исследований, которые проводятся в двух направлениях: первое связано с установлением молекулярной структуры и выявлением ее особенностей, второе – посвящено изучению надмолекулярного строения .

По данным прямых спектроскопических и рентгеноструктурных методов исследований структура органической составляющей неоднородна и состоит в основном из макромолекул нерегулярного строения различной величины. Поэтому, говоря о «молекулярной структуре органической массы», имеется в виду усредненная структура, отнесенная к единице массы угля. Эта усредненная структура формируется по данным элементного, функционального, мацерального и фрагментального анализов .

Более точно органическая составляющая угля может быть представлена с помощью структурных параметров. Эти параметры должны определять физико-химические свойства как отдельных органических молекул, так и всей органической массы угля в целом. В соответствии с этим физические параметры от органических молекул можно было перенести ко всей органической массе и эти параметры должны быть экспериментально определяемыми. К этим молекулярно-структурным параметрам в первую очередь относится элементный состав угля (числа разных сортов атомов C, H, N, O, S), отдельные типы связей (s- и p-связи), функциональных групп, насыщенных и ароматических циклов и т.д., между которыми есть математические или статистические зависимости .

Исходя из этого в целях упрощения расчетов в углехимии принято понятие «среднестатистической структурной единицы». Среднестатистическая структурная единица макромолекулы – это фрагмент структуры, восстанавливающий полную структуру при кратном ее увеличении. Принимая за точку отсчета «среднестатистическую структурную единицу», органическая часть угля представляется в виде гипотетической макромолекулы регулярного строения, и среднестатистическая структурная единица выступает в виде элементарного фрагмента структуры .

Исходя из этого, за среднестатистическую структурную органо-массовую единицу угольного вещества в целом или его отдельных компонентов принимается единица массы, которая по элементному, функциональному и фрагментальному составу является копией обозначенной макросистемы . Поэтому молекулярная масса играет роль главного структурного параметра органической массы угля (ОМУ).

Материалы и методы исследования

Молекулярная масса – это сумма масс атомов, входящих в состав данной молекулы, выраженная в атомных единицах массы (а.е.м.):

1 а.е.м. = 1/12 массы атома 12С = 1,66057·10–27 кг.

Для органической массы угля молекулярную массу вычисляют несколькими способами на единицу массы : на 100 атомов углерода или на 100 атомов органической массы угля , что зависит от принятой к рассмотрению среднестатистической структурной единицы. Следовательно, интерпретация данных по определению молекулярных масс ОМУ и построение математической модели расчета этого важного структурного параметра является актуальной задачей современной науки.

Молекулярная масса ОМУ имеет общую брутто-формулу , в которой x, y, z, k, t означает число разных сортов атомов для среднестатистической структурной единицы, значение x, y, z, k, t которых можно вычислить из элементного состава. Для этого необходимо:

– определить число молей соответствующих атомов;

– вычислить процентное содержание атомов каждого элемента в составе ОМУ;

– рассчитать число разных сортов атомов на 100 атомов ОМУ или на 100 атомов углерода.

Например, уголь имеет следующий элементный состав ( %): С = 71,14; H = 4,17; N = 1,12; O = 23,36; S = 0,21.

Число молей атомов углерода составит

,

где МС – относительная атомная масса углерода, а.е.м.

Соответственно для остальных атомов число молей составит nH = 4,14; nN = 0,08; nO = 1,46; nS = 0,01, а общее число молей n = 11,61.

Процентное содержание атомов углерода в составе ОМУ:

%.

Соответственно, для остальных атомов процентное содержание атомов углерода в составе ОМУ составит AH = 35,64; AH = 0,69; AO = 12,58; AS = 0,06. Таким образом, молекулярная масса среднестатистической структурной единицы органической массы угля, состоящей из 100 атомов разных сортов, составит 861,59 а.е.м.

Для вычисления молекулярной массы на 100 атомов углерода необходимо вычислить нормировочный коэффициент:

,

или, подставив вычисленное значение нормировочного коэффициента, получим, что молекулярная масса среднестатистической структурной единицы органической массы угля, состоящей из 100 атомов углерода и соответствующего количества других сортов атомов, составит 1688,36 а.е.м.

По вышеприведенному алгоритму вычислена молекулярная масса для бурых и каменных углей различных марок и бассейнов России, а также для антрацита, древесины и торфа. На рис. 1 наглядно видно, что молекулярная масса среднестатистической структурной единицы, содержащей 100 атомов углерода, при переходе от низких к высоким стадиям метаморфизма монотонно снижается.

Рис. 1. Молекулярная масса среднестатистической структурной единицы твердых горючих ископаемых: r – на 100 атомов органической массы угля; r – на 100 атомов углерода

Кроме того, точки, отражающие молекулярную массу на 100 атомов углерода, располагаются на графике (рис. 1) более упорядоченно по сравнению с точками, отражающими молекулярную массу на 100 атомов ОМУ. Поэтому для дальнейшего изучения этого структурного параметра принимаем вариант расчета молекулярной массы на 100 атомов углерода.

Для математической модели, основанной на взаимосвязи молекулярной массы на 100 атомов углерода, со структурными параметрами в качестве объекта исследования был взят ряд древесина – торф – бурый уголь – каменный уголь – антрацит, представленный показателями качества (данные технического и элементного анализа) для более чем пятисот проб твердых горючих ископаемых. База данных составлена по литературным источникам, содержащим геологическую информацию , и данным, приведенным в периодических изданиях . Для определения корреляционных зависимостей между исследуемыми параметрами была проведена математическая обработка данных методом регрессионного анализа с использованием программ Microsоft Еxcel и Statistica.

Разработка методики расчета молекулярной массы среднестатистической структурной единицы угля, а следовательно, и органической массы угля в целом, как и нахождение взаимосвязей между структурными параметрами, характеризующими свойства, структуру и изменение степени углефикации твердых горючих ископаемых, основывается на том, что зависимость между структурными параметрами, изменяющимися при преобразовании органического вещества углей в недрах при геологических процессах, имеет не только сложный характер, но и тесную генетическую связь и могут рассматриваться как следствие одной причины. Целью построения данной математической модели было описание корреляционной зависимости молекулярной массы ОМУ, рассчитанной на 100 атомов углерода, и структурных параметров, характеризующих твердые горючие ископаемые.

Результаты исследования и их обсуждение

Анализ зависимости структурных параметров показал наличие линейной связи между ними. Для установления «тесноты» взаимосвязи между вычисленными структурными параметрами был проведен расчет коэффициентов парной корреляции между для ними и построена матрица парных коэффициентов корреляции.

Фрагмент матрицы парных коэф-фициентов корреляции между молекулярной массой на 100 атомов углерода и структурными параметрами представлен в таблице.

Фрагмент матрицы парных коэффициентов корреляции

Показатель

Матрица парных коэффициентов корреляции

–0,984

0,852

–0,984

–0,963

0,956

0,982

0,9

Примечание. M100 – молекулярная масса на 100 атомов углерода; C, O – содержание в топливе углерода и кислорода соответственно по данным элементного анализа, % на daf; Vdaf – выход летучих веществ на сухую беззольную массу ОМУ; fa – показатель степени ароматичности ОМУ; Ns – концентрация парамагнитных центров в ОМУ; N100 – общее количество связей на 100 атомов углерода; Q – теплота (энтальпия) образования ОМУ.

С применением полученной матрицы парной корреляции проведен отбор наиболее значимых показателей в пределах доверительного интервала. Определение нижней границы отбора коэффициентов корреляции производилось таким образом, чтобы разность между максимальным и минимальным значениями составляла величину 2,5 %, что и составило доверительный интервал ошибки расчета данных. Исходя из этого интервала, отбирались структурные показатели для последующего составления уравнений множественной корреляции. Из отобранных таким образом параметров отсеивались те, которые использовались при расчете рассматриваемого параметра. В таблице выделены структурные показатели, имеющие коэффициенты корреляции в пределах выбранного доверительного интервала.

В результате проведенной математической обработки данных было получено следующее уравнение множественной регрессии с коэффициентом корреляции 0,99:

(1)

На рис. 2 показано сопоставление значений молекулярной массы, вычисленных по уравнению (1), и молекулярной массы углей, не вошедших в расчетную базу данных, а именно для углей Австралии, США и ЮАР, из чего можно сделать вывод об адекватности полученного уравнения.

Рис. 2. Молекулярная масса на 100 атомов углерода среднестатистической структурной единицы органической массы углей Австралии (r), ЮАР (•), США (£) и рассчитанная по полученному уравнению (–––––)

Заключение

Таким образом, с использованием представительной выборки качественных характеристик и данных элементного анализа для углей основных бассейнов России была получена математическая модель (уравнение) для расчета одного из основных структурных параметров ОМУ – молекулярной массы среднестатистической структурной единицы органической массы угля, содержащей 100 атомов углерода.

Показано монотонное снижение молекулярной массы на 100 атомов углерода в ряду: торф – бурый уголь – каменный уголь – антрацит. Выявлена тесная линейная взаимосвязь молекулярной массы не только с содержанием элементов в угле (углерода и кислорода), но и со степенью ароматичности ОМУ и с концентрацией парамагнитных центров.

Полученная математическая модель является рабочим теоретическим инструментом исследования структуры твердых горючих ископаемых и может найти широкое применение в углехимических исследованиях при решении химических и технологических задач по переработке углей.

Библиографическая ссылка

Москаленко Т.В., Михеев В.А., Ворсина Е.В. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РАСЧЕТА МОЛЕКУЛЯРНОЙ МАССЫ УГЛЯ // Современные наукоемкие технологии. – 2018. – № 10. – С. 82-86;
URL: http://top-technologies.ru/ru/article/view?id=37199 (дата обращения: 22.06.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания» (Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления) «Современные проблемы науки и образования» список ВАК ИФ РИНЦ = 0.791 «Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074 «Современные наукоемкие технологии» список ВАК ИФ РИНЦ = 0.909 «Успехи современного естествознания» список ВАК ИФ РИНЦ = 0.736 «Международный журнал прикладных и фундаментальных исследований» ИФ РИНЦ = 0.570 «Международный журнал экспериментального образования» ИФ РИНЦ = 0.431 «Научное Обозрение. Биологические Науки» ИФ РИНЦ = 0.303 «Научное Обозрение. Медицинские Науки» ИФ РИНЦ = 0.380 «Научное Обозрение. Экономические Науки» ИФ РИНЦ = 0.600 «Научное Обозрение. Педагогические Науки» ИФ РИНЦ = 0.308 «European journal of natural history» ИФ РИНЦ = 1.369 Издание научной и учебно-методической литературы ISBN РИНЦ DOI

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *