Какой радиус окружности?

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу.

Если говорить проще, окружность — это замкнутая линия, как, например, обруч и велосипедное колесо. Круг — плоская фигура, ограниченная окружностью, как апельсин и тарелка.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр.

Радиус — отрезок, который соединяет центр окружности и любую точку на ней.

Записывайтесь на курсы по математике для учеников с 1 по 11 классы.

Как узнать диаметр. Формулы

В данной теме нам предстоит узнать четыре формулы:

  1. Общая формула. Исходя из основных определений нам известно, что значение диаметра равно двум радиусам: D = 2 * R, D — диаметр, где R — радиус.

иллюстрация общей формулы

  1. Если перед нами стоит задача найти диаметр по длине окружности:

D = L : π, где L — длина, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Чтобы получить правильный ответ, можно поделить столбиком или использовать онлайн калькулятор.
иллюстрация нахождения диаметра окружности

  1. Если известна площадь круга:

D = 2 * √(А : π), где А — площадь.

Для проверки можно всегда воспользоваться формулой для поиска площади круга: A = π * r2.
иллюстрация формулы поиска площади круга

  1. Если есть чертеж окружности:
  • Начертить внутри круга прямую горизонтальную линию. Ее месторасположение не играет значительную роль.
    горизонтальная линия внутри круга
  • Отметить точки пересечения прямой и окружности.
    иллюстрация точек пересечения прямой и окружности
  • Начертить при помощи циркуля две окружности, первую — с центром в точке A, вторую — с центром в точке B.
    иллюстрация двух окружностей с разным центром
  • Провести прямую через две точки, в которых произошло пересечение. Диаметр равен этому отрезку.
    иллюстрация прямой в точках пересечения
  • Теперь осталось измерить диаметр круга при помощи линейки. Получилось!
    измерение диаметра круга

Эти простые формулы могут пригодиться не только на школьных уроках, а также, если вы решите освоить профессию дизайнера интерьера, архитектора или модельера одежды. Также ты можешь прочитать — как найти длину окружности?

Легко ориентироваться в математических понятиях и решать задачки с азартом помогут в детской школе Skysmart. Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с преподавателем.

Запишите ребенка на бесплатный пробный урок математики в Skysmart: определим пробелы в знаниях и расскажем, как наверстать упущенное — весело и в удовольствие.

Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла

Формулы для радиуса окружности, вписанной в треугольник

Вывод формул для радиуса окружности, вписанной в треугольник

Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла

Напомним определение биссектрисы угла.

Определение 1. Биссектрисой угла называют луч, делящий угол на две равные части.

Теорема 1 (Основное свойство биссектрисы угла). Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).

Рис. 1

Доказательство. Рассмотрим произвольную точку D, лежащую на биссектрисе угла BAC, и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE, а гипотенуза AD – общая. Следовательно,

DF = DE,

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1). Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).

Рис. 2

Доказательство. Рассмотрим произвольную точку D, лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE, а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Определение 2. Окружность называют окружностью, вписанной в угол, если она касается касается сторон этого угла.

Теорема 3. Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.

Доказательство. Пусть точка D – центр окружности, вписанной в угол BAC, а точки E и F – точки касания окружности со сторонами угла (рис.3).

Рис.3

Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности), а гипотенуза AD – общая. Следовательно

AF = AE,

что и требовалось доказать.

Замечание. Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных, проведенных к окружности из одной точки, равны.

Напомним определение биссектрисы треугольника.

Определение 3. Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.

Теорема 4. В любом треугольнике все три биссектрисы пересекаются в одной точке.

Доказательство. Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC, и обозначим точку их пересечения буквой O (рис. 4).

Рис. 4

Опустим из точки O перпендикуляры OD, OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC, то в силу теоремы 1 справедливо равенство:

OD = OE,

Поскольку точка O лежит на биссектрисе угла ACB, то в силу теоремы 1 справедливо равенство:

OD = OF,

Следовательно, справедливо равенство:

OE = OF,

откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC. Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать

Определение 4. Окружностью, вписанной в треугольник, называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности.

Рис. 5

Следствие. В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.

Формулы для радиуса окружности, вписанной в треугольник

Формулы, позволяющие найти радиус вписанной в треугольник окружности, удобно представить в виде следующей таблицы.

Фигура Рисунок Формула Обозначения
Произвольный треугольник

Посмотреть вывод формулы

a, b, c – стороны треугольника,
S – площадь,
r – радиус вписанной окружности,
p – полупериметр

Посмотреть вывод формулы

Равнобедренный треугольник

Посмотреть вывод формулы

a – боковая сторона равнобедренного треугольника,
b – основание,
r – радиус вписанной окружности

Равносторонний треугольник

Посмотреть вывод формулы

a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Прямоугольный треугольник

Посмотреть вывод формул

a, b – катеты прямоугольного треугольника,
c – гипотенуза,
r – радиус вписанной окружности

Произвольный треугольник

где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.

Посмотреть вывод формулы

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.

Посмотреть вывод формулы

Равнобедренный треугольник

где
a – боковая сторона равнобедренного треугольника,
b – основание,
r – радиус вписанной окружности

Посмотреть вывод формулы

Равносторонний треугольник

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Посмотреть вывод формулы

Прямоугольный треугольник

где
a, b – катеты прямоугольного треугольника,
c – гипотенуза,
r – радиус вписанной окружности

Посмотреть вывод формул

Произвольный треугольник

где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.

Посмотреть вывод формулы

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.

Посмотреть вывод формулы

Равнобедренный треугольник

где
a – боковая сторона равнобедренного треугольника,
b – основание,
r – радиус вписанной окружности

Посмотреть вывод формулы

Равносторонний треугольник

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Посмотреть вывод формулы

Прямоугольный треугольник

где
a, b – катеты прямоугольного треугольника,
c – гипотенуза,
r – радиус вписанной окружности

Посмотреть вывод формулы

Вывод формул для радиуса окружности, вписанной в треугольник

Теорема 5 . Для произвольного треугольника справедливо равенство

где a, b, c – стороны треугольника, r – радиус вписанной окружности, – полупериметр (рис. 6).

Рис. 6

Доказательство. Из формулы

с помощью формулы Герона получаем:

что и требовалось.

Теорема 6 . Для равнобедренного треугольника справедливо равенство

где a – боковая сторона равнобедренного треугольника, b – основание, r – радиус вписанной окружности (рис. 7).

Рис. 7

Доказательство. Поскольку для произвольного треугольника справедлива формула

где

то, в случае равнобедренного треугольника, когда

получаем

что и требовалось.

Теорема 7 . Для равностороннего треугольника справедливо равенство

где a – сторона равностороннего треугольника, r – радиус вписанной окружности (рис. 8).

Рис. 8

Доказательство. Поскольку для равнобедренного треугольника справедлива формула

то, в случае равностороннего треугольника, когда

b = a,

получаем

что и требовалось.

Замечание. Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.

Теорема 8 . Для прямоугольного треугольника справедливо равенство

где a, b – катеты прямоугольного треугольника, c – гипотенуза, r – радиус вписанной окружности.

Доказательство. Рассмотрим рисунок 9.

Рис. 9

Поскольку четырёхугольник CDOF является прямоугольникомпрямоугольником, у которого соседние стороны DO и OF равны, то этот прямоугольник – квадратквадрат. Следовательно,

СD = СF= r,

В силу теоремы 3 справедливы равенства

Следовательно, принимая также во внимание теорему Пифагора, получаем

что и требовалось.

Замечание. Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в прямоугольный треугольник, с помощью общей формулы для радиуса окружности, вписанной в произвольный треугольник.

На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Окружность — геометрическое место точек плоскости, расстояние от которых до центра окружности равно.

Центр окръжности

Радиус: расстояние от центра окружности до его границы.

Диаметр: наибольшее расстояние от одной границы окружности до другой. Диаметр равен двум радиусам.
$d = 2\cdot r$

Периметр (длина окружности): длина границы окружности.
Длина окружности $= \pi \cdot$ диаметр $= 2 \cdot \pi \cdot$ радиус
Длина окружности $= \pi \cdot d = 2 \cdot \pi \cdot r$

$\pi$ — pi: число, равное 3,141592… или $\approx \frac{22}{7}$, то есть отношение $\frac{\text{длины окружности}}{\text{диаметр}}$ любого окружности.
пи

Дуга: изогнутая линия, которая является частью окружности.
Дуги окружности измеряется в градусах или радианах.
Например: 90° или $\frac{\pi}{2}$ — четверть круга,
180° или $\pi$ — половина круга.
Сумма всех дуг окружности составляет 360° или $2\pi$

Хорда: отрезок прямой, соединяющей две точки на окружности.

Сектор: похож на часть пирога (клин).

Касательная к окружности: прямая, перпендикулярна к радиусу, и имеющая ТОЛЬКО одну общую точку с окуржностью.

Формулы

Длина окружности $=\pi \cdot \text{диаметр} = 2\cdot \pi \cdot \text{радиус}$

Площадь круга $= \pi \cdot$ радиус2

Радиус обозначается как r, диаметр как d,длина окружности как P и площадь как S.

$P = \pi \cdot d = 2\cdot \pi \cdot r$
$S = \pi \cdot r^2$

Площадь сектора круга

Площадь сектора круга K: (с центральным углом $\theta$ и радиусом $r$).
Если угол $\theta$ в градусах, тогда площадь = $\frac{\theta}{360} \pi r^2$
Если угол $\theta$ в радианах, тогда площадь, тогда площадь = $\frac{\theta}{2} r^2$

Углы

Центральный угол

Если длина дуги составляет $\theta$ градуов или радиан, то значение центрального угла также $\theta$ (градусов или радиан).

Если вы знаете длину дуги (в дюймах, ярдах, футах, сантиметрах, метрах …) вы можете найти значение её соответствующего центрального угла ($\theta$) по формуле:

$\theta = 360 \cdot \frac{l}{P} = \frac{360 \cdot l}{2 \cdot \pi \cdot r} = \frac{180 \cdot l}{\pi \cdot r}$

$l$ — длина дуги.

Вписанный угол

Вписанный угол это угол с вершиной на окружности и со сторонами, которые содержат хорды окружности.
На рисунке, угол APB это вписанный угол.

Величина вписанного угла равна половине дуги, на которую он опирается.

Пример:
$\widehat{AB} = 84^\circ$
$\angle APB = \frac{84}{2} = 42^\circ$

Углы между двумя хордами

Случай 1: два секущие пересекаются внутри окружности.

Когда две секущие пересекаются внутри окружности, величина образованных угла, в два раза меньше суммы величин дуг, на которые они опираются.На рисунке дуга AB и дуга CD равны 60° и 50°тогда углы 1 и 2 равны $\frac{1}{2}(60^\circ + 50^\circ)=55^\circ$

Случай 2: две секущие пересекаются вне окружности.

Иногда секущие пересекаются за пределами окружности. Когда это случается, величина образующихся углов равна половине разности дуг, на которые они опираются.

​ ​ ​

Лайфхакер собрал девять способов, которые помогут справиться с геометрическими задачами.

Выбирайте формулу в зависимости от известных величин.

Через площадь круга

  1. Разделите площадь круга на число пи.
  2. Найдите корень из результата.
Как найти радиус окружности через площадь круга
Иллюстрация: Лайфхакер
  • R — искомый радиус окружности.
  • S — площадь круга. Напомним, кругом называют плоскость внутри окружности.
  • π (пи) — константа, равная 3,14.
Сейчас читают 🔥
  • ТЕСТ: Сможете ли вы решить простейшие уравнения?

Через длину окружности

  1. Умножьте число пи на два.
  2. Разделите длину окружности на результат.
Как найти радиус круга через длину окружности
Иллюстрация: Лайфхакер
  • R — искомый радиус окружности.
  • P — длина окружности (периметр круга).
  • π (пи) — константа, равная 3,14.

Через диаметр окружности

Если вы вдруг забыли, радиус равняется половине диаметра. Поэтому, если диаметр известен, просто разделите его на два.

Как найти радиус окружности через диаметр
Иллюстрация: Лайфхакер
  • R — искомый радиус окружности.
  • D — диаметр.

Через диагональ вписанного прямоугольника

Диагональ прямоугольника является диаметром окружности, в которую он вписан. А диаметр, как мы уже вспомнили, в два раза больше радиуса. Поэтому достаточно разделить диагональ на два.

Как вычислить радиус окружности через диагональ вписанного прямоугольника
Иллюстрация: Лайфхакер
  • R — искомый радиус окружности.
  • d — диагональ вписанного прямоугольника. Напомним, она делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Поэтому, если диагональ неизвестна, её можно найти через соседние стороны прямоугольника с помощью теоремы Пифагора.
  • a, b — стороны вписанного прямоугольника.

Через сторону описанного квадрата

Сторона описанного квадрата равна диаметру окружности. А диаметр — повторимся — равен двум радиусам. Поэтому разделите сторону квадрата на два.

Как найти радиус круга через сторону описанного квадрата
Иллюстрация: Лайфхакер
  • r — искомый радиус окружности.
  • a — сторона описанного квадрата.

Через стороны и площадь вписанного треугольника

  1. Перемножьте три стороны треугольника.
  2. Разделите результат на четыре площади треугольника.
Как найти радиус окружности через стороны и площадь вписанного треугольника
Иллюстрация: Лайфхакер
  • R — искомый радиус окружности.
  • a, b, с — стороны вписанного треугольника.
  • S — площадь треугольника.

Через площадь и полупериметр описанного треугольника

Разделите площадь описанного треугольника на его полупериметр.

Как найти радиус окружности через площадь и полупериметр описанного треугольника
Иллюстрация: Лайфхакер
  • r — искомый радиус окружности.
  • S — площадь треугольника.
  • p — полупериметр треугольника (равен половине от суммы всех сторон).

Через площадь сектора и его центральный угол

  1. Умножьте площадь сектора на 360 градусов.
  2. Разделите результат на произведение пи и центрального угла.
  3. Найдите корень из полученного числа.
Как найти радиус окружности через площадь сектора и его центральный угол
Иллюстрация: Лайфхакер
  • R — искомый радиус окружности.
  • S — площадь сектора круга.
  • α — центральный угол.
  • π (пи) — константа, равная 3,14.

Через сторону вписанного правильного многоугольника

  1. Разделите 180 градусов на количество сторон многоугольника.
  2. Найдите синус полученного числа.
  3. Умножьте результат на два.
  4. Разделите сторону многоугольника на результат всех предыдущих действий.
Как вычислить радиус круга через сторону вписанного правильного многоугольника
Иллюстрация: Лайфхакер
  • R — искомый радиус окружности.
  • a — сторона правильного многоугольника. Напомним, в правильном многоугольнике все стороны равны.
  • N — количество сторон многоугольника. К примеру, если в задаче фигурирует пятиугольник, как на изображении выше, N будет равняться 5.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *