Как рассчитать вероятность выигрыша?

Можно ли выиграть в лотерею? Какие шансы угадать нужное количество чисел и получить джекпот или приз младшей категории? Вероятность выигрыша легко просчитывается, любой желающий может сделать это самостоятельно.

Как вообще считается вероятность выигрыша в лотерею?

Числовые лотереи проводятся по определенным формулам и шансы каждого события (выигрыша той или иной категории) рассчитываются математически. Причем эта вероятность вычисляется для любого нужного значения, будь то «5 из 36», «6 из 45», или «7 из 49» и она не меняется, так как зависит только от общего количества чисел (шаров, номеров) и того, сколько из них надо угадать.

Например, для лотереи «5 из 36» вероятности всегда следующие

  • угадать два числа — 1 : 8
  • угадать три числа — 1 : 81
  • угадать четыре числа — 1 : 2 432
  • угадать пять чисел — 1 : 376 992

Другими словами — если отметить в билете одну комбинацию (5 номеров), то шанс угадать «двойку» всего 1 из 8. А вот «пять» номеров поймать гораздо сложнее, это уже 1 шанс из 376 992. Именно такое (376 тысяч) количество всевозможных комбинаций существует в лотерее «5 из 36» и гарантированно в ней выиграть можно, если только заполнить их все. Правда, сумма выигрыша в этом случае не оправдает вложений: если билет стоит 80 рублей, то отметить все комбинации будет стоить 30 159 360 рублей. Джекпот обычно намного меньше.

В общем, все вероятности давно известны, всего и остается, что их найти или рассчитать самостоятельно, при помощи соответствующих формул.

Для тех, кому искать лень, приведем вероятности выигрыша для основных числовых лотерей Столото — они представлены в этой таблице

Сколько чисел надо угадать шансы в 5 из 36 шансы в 6 из 45 шансы в 7 из 49
2 1:8 1:7
3 1:81 1:45 1:22
4 1:2432 1:733 1:214
5 1:376 992 1:34 808 1:4751
6 1:8 145 060 1:292 179
7 1:85 900 584

Также, информация по вероятностям в основных числовых лотереях есть .

Эти же вероятности можно рассчитать самостоятельно при помощи нашего лото-виджета «Расчет вероятности выигрыша» для этого не требуется работать с формулами, надо всего лишь менять исходные значения (числовая формула лотереи и кол-во угадываемых номеров)

Необходимые пояснения

Лото-виджет позволяет рассчитывать вероятности выигрыша для лотерей с одним лототроном (без бонусных шаров) или с двумя лототронами. Также можно просчитать вероятности развернутых ставок

Расчет вероятности для лотерей с одним лототроном (без бонусных шаров)

Используются только первые два поля, в которых числовая формула лотереи, например: — «5 из 36», «6 из 45», «7 из 49». В принципе, можно просчитать почти любую мировую лотерею. Есть только два ограничения: первое значение не должно превышать 30, а второе — 99.

Если в лотерее не используются дополнительные номера*, то после выбора числовой формулы остается нажать кнопку рассчитать и результат готов. Не важно, вероятность какого события вы хотите узнать – выигрыш джекпота, приз второй/третьей категории или просто выяснить, сложно ли угадать 2-3 номера из нужного количества – результат высчитывается почти моментально!

Вероятность выигрыша в лотерее "5 из 36"

Пример расчета. Вероятность угадать 5 из 36 составляет 1 шанс из 376 992

Примеры. Вероятности выигрыша главного приза для лотерей:
«5 из 36» (Гослото, Россия) – 1:376 922
«6 из 45» (Гослото, Россия; Saturday Lotto, Австралия; Lotto, Австрия) — 1:8 145 060
«6 из 49» (Спортлото, Россия; La Primitiva, Испания; Lotto 6/49, Канада) — 1:13 983 816
«6 из 52» (Super Loto, Украина; Illinois Lotto, США; Mega TOTO, Малазия) — 1:20 358 520
«7 из 49» (Гослото, Россия; Lotto Max, Канада) — 1:85 900 584

Лотереи с двумя лототронами (+ бонусный шар)

Если в лотерее используется два лототрона, то для расчета необходимо заполнить все 4 поля. В первых двух – числовая формула лотереи (5 из 36, 6 из 45 и тд), в третьем и четвертом поле отмечается количество бонусных шаров (x из n). Важно: данный расчет можно использовать только для лотерей с двумя лототронами. Если бонусный шар достается из основного лототрона, то вероятность выигрыша именно этой категории считается по-другому.

* Так как при использовании двух лототронов шанс выигрыша высчитывается перемножением вероятностей друг на друга, то для корректного расчета лотерей с одним лототроном выбор дополнительного номера по умолчанию стоит как 1 из 1, то есть не учитывается.

Примеры. Вероятности выигрыша главного приза для лотерей:
«5 из 36 + 1 из 4» (Гослото, Россия) – 1:1 507 978
«4 из 20 + 4 из 20» (Гослото, Россия) – 1:23 474 025
«6 из 42 + 1 из 10» (Megalot, Украина) – 1:52 457 860
«5 из 50 + 2 из 10» (EuroJackpot) – 1:95 344 200
«5 из 69 + 1 из 26» (Powerball, США) — 1: 292 201 338

Вероятность выигрыша в лотерее 4 из 20, составляет 1 шанс из 23 миллионов

Пример расчет. Шанс угадать 4 из 20 дважды (в двух полях) составляет 1 к 23 474 025

Хорошей иллюстрацией сложности игры с двумя лототронами служит лотерея «Гослото «4 из 20». Вероятность угадать 4 числа из 20 в одном поле вполне щадящая, шанс этого — 1 из 4 845. Но, когда угадать надо выиграть оба поля… то вероятность рассчитывается их перемножением. То есть, в данном случае 4 845 умножаем на 4 845, что дает 23 474 025. Так что, простота этой лотереи обманчива, выиграть в ней главный приз сложнее, чем в «6 из 45» или «6 из 49»

Расчет вероятности (развернутые ставки)

В данном случае считается вероятность выигрыша при использовании развернутых ставок. Для примера – если в лотерее 6 из 45, отметить 8 чисел то вероятность выиграть главный приз (6 из 45) составит 1 шанс из 290 895. Пользоваться ли развернутыми ставками – решать вам. С учетом того, что стоимость их получается очень высокая (в данном случае 8 отмеченных чисел это 28 вариантов) стоит знать как это увеличивает шансы на выигрыш. Тем более, что сделать это теперь совсем просто!

Расчет вероятности, пример развернутой ставки

Расчет вероятности выигрыша (6 из 45) на примере развернутой ставки (отмечено 8 чисел)

И другие возможности

При помощи нашего виджета можно просчитать вероятность выигрыша и в бинго-лотереях, например, в «Русское лото». Главное, что надо учитывать, это количество ходов, отведенных на наступление выигрыша. Чтобы было понятнее: долгое время в лотерее «Русское лото» джекпот можно было выиграть в том случае если 15 чисел (в одном поле) закрывались за 15 ходов. Вероятность такого события совершенно фантастическая, 1 шанс из 45 795 673 964 460 800 (можете проверить и получить это значение самостоятельно). Именно поэтому, кстати, много лет в лотерее «Русское лото» никто не мог сорвать джекпот, и его распределяли принудительно.

20.03.2016 правила лотереи «Русское лото» были изменены. Джекпот теперь можно выиграть, если 15 чисел (из 30) закрывались за 15 ходов. Получается аналог развернутой ставки — ведь 15 чисел угадываются из 30 имеющихся! А это уже совсем другая вероятность:

Вероятность выиграть джекпот в русском лото

Шанс выиграть джекпот (по новым правилам) в лотерее «Русское лото»

И в заключение приведем вероятность выигрыша в лотереях, использующих бонусный шар из основного лототрона (наш виджет такие значения не считает). Из самых известных

Спортлото «6 из 49» (Гослото, Россия), La Primitiva «6 из 49» (Испания)
Категория «5 + бонусный шар»: вероятность 1:2 330 636

SuperEnalotto «6 из 90» (Италия)
Категория «5 + бонусный шар»: вероятность 1:103 769 105

Oz Lotto «7 из 45» (Австралия)
Категория «6 + бонусный шар»: вероятность 1:3 241 401
«5 + 1» — вероятность 1:29 602
«3 +1» — вероятность 1:87

Lotto «6 из 59» (Великобритания)
Категория «5 + 1 бонусный шар»: вероятность 1:7 509 579

Денис Пешехонов

​ ​ ​

Математика поможет подсчитать вероятность выигрыша и определить, что выгоднее: купить 10 лотерейных билетов на одну игру или по билету на 10 разных.

Денис Пешехонов

В американском сериале «4исла» (Numb3rs) главный персонаж — математик, помогающий ФБР в раскрытии преступлений. В одной из серий он произносит фразу о том, что вероятность быть убитым по пути за лотерейным билетом выше, чем вероятность выиграть в лотерею. В конце статьи я приведу расчёт, связанный с этим утверждением, а сейчас хочу немного рассказать о математике, стоящей за массовыми азартными играми, и о том, как она может помочь чуть повысить свои шансы.

Правило 1. Оценивайте риски

Для современного просвещённого человека не секрет, что казино и различные игорные заведения рассчитывают все свои игры так, чтобы всегда быть в выигрыше и иметь прибыль. Делается это очень просто: человеку нужно вернуть выигрыш, который соотносится с его ставкой в меньшую сторону по сравнению с его шансами выиграть.

Да, так или иначе, даже самые сложные математические модели в среднем сводятся к одному: если вы ставите 1 рубль, а вам предлагают получить 1 000 рублей, значит, ваш шанс выиграть — меньше, чем 1/1 000.

Исключений нет, если только кто-то специально не хочет подарить вам денег. Держите в голове это простое правило, чтобы всегда трезво смотреть на ситуацию.

Теория игр оценивает любую стратегию аналогично: вероятность получить выигрыш умножается на его размер. Грубо говоря, математика считает, что гарантированно получить 1 000 рублей — это как получить 2 000 рублей с 50-процентным шансом. Этот принцип даёт вам возможность грубо сравнивать различные игры между собой. Что лучше: миллион долларов с шансом 1/100 000 или 50 долларов с шансом 1/4? Интуитивно кажется, что первое предложение интереснее, но математически выгоднее второе.

Если оставаться в рамках одной лишь математики, можно вычислить: выиграть в казино невозможно, ведь любая выбранная стратегия приводит к тому, что произведение вероятности победы на размер выплаты для игрока всегда ниже ставки, которую он уже сделал.

Однако люди играют потому, что выигрыш для них заключается не только в деньгах, но ещё и в эмоциях от процесса — и уж тем более от победы.

А ещё потому, что деньги для нас нелинейны: формально получить 1 рубль прямо сейчас — это как получить миллион рублей с шансом 1/1 000 000, но по факту потеря рубля никак не скажется на нашем состоянии, в жизни не изменится совершенно ничего, а вот получение миллиона — очень серьёзное событие.

Правило 2. Играйте в открытую

К сожалению, проникнуть на внутреннюю кухню лотереи мы не можем. Но полезно понимать хотя бы формальную процедуру того, как именно идёт розыгрыш.

Например, знаменитые игровые автоматы «Однорукий бандит» и другие слот-машины — это на самом деле немного обман: на колесе, которое видит игрок, нарисованы символы различной стоимости, но при этом всё устроено так, чтобы игрок подумал, будто шансы выпадения каждого символа одинаковые. На самом деле (в старых автоматах — механически, а в современных — с помощью программы) за каждым видимым колесом скрывается настоящее, на котором ценные символы встречаются редко, а дешёвые – часто.

Шансы выпадения 777 на слот-машине ниже, чем вероятность получить какие-нибудь три вишни, причём отличие может быть в десятки раз.

«Открытые» лотереи в этом смысле гораздо честнее. В США распространён формат, когда билет либо содержит в себе последовательность чисел, либо она выбирается покупателем самостоятельно. В России, например, предпочитают формат лото: на билете расположены несколько линий чисел, и нужно закрыть или одну из них (обычная победа), или все (джекпот). В теории проводящая лотерею фирма может «специально» печатать и продавать невыигрышные билеты, а потом подтасовывать порядок шаров, но на практике крупные компании этого не делают: организаторы лотереи и так всегда в выигрыше, а скандал в случае вскрытия недобросовестности будет огромен.

Если вы намерены сыграть в азартную игру, полезно будет понять её механику и убедиться в отсутствии влияния заинтересованных лиц на результаты.

Правило 3. Знайте свои шансы

Вероятность джекпота в любой лотерее считается, как правило, одной формулой. А вот расчёт вероятности, например, закрыть в лото хоть одну строчку весьма нетривиален и занял бы целую статью, а может, и не одну. Поэтому на самом деле шанс получить какие-то деньги в лотерее выше за счёт того, что в большинстве лотерей есть дополнительные призы помимо главного. Но я остановлюсь именно на джекпоте для простоты оценки.

Допустим, мы купили лотерейный билет со случайным набором чисел. Во время розыгрыша вытаскивают столько же шаров, и если числа на них совпали с числами в билете (в любом порядке, это важно!), то мы выиграли. Вероятность такого выигрыша рассчитывается так:

Вероятность выигрыша = 1 ÷ Количество комбинаций шаров.

Количество комбинаций без учёта порядка называется в математике числом сочетаний, и если формула для его расчёта вам известна и понятна, то из этой статьи вы, скорее всего, не узнаете ничего нового. Если вы не математик, то проще будет воспользоваться онлайн-сервисом, например вот этим. Подобные сервисы (и формула, лежащая в основе их работы) предлагают задать два числа:

  • n — общее количество возможных вариантов одного предмета. В нашем случае предмет — это шар, а всего шаров столько, сколько чисел в лотерее, об этом ниже.
  • k — количество предметов в одной выборке. В нашем случае — сколько шаров лотерея разыгрывает и сколько при этом чисел в билете (предполагается, что эти величины равны).

Итак, если у нас есть лотерея с розыгрышем 5 шаров, а всего в лотерее 50 шаров с числами от 1 до 50, то вероятность выиграть в неё будет равна единице к числу сочетаний при k = 5 и n = 50, то есть:

1 ÷ 2 118 760 = 0,00005%.

Рассмотрим более сложный случай — популярную американскую лотерею PowerBall, в которой величина джекпота превышала миллиард долларов. По правилам есть базовая выборка из 5 чисел (от 1 до 69), а также одно дополнительное число (от 1 до 26). Нужно получить совпадение всех 6 чисел, чтобы выиграть.

Несложно понять, что шанс получить первый набор равен единице к числу сочетаний при k = 5 и n = 69 (то есть 11 238 513), а шанс «поймать» последний шар — 1 к 26. Чтобы получить всё сразу, эти шансы нужно умножить, потому что события должны произойти одновременно:

(1 ÷ 11 238 513) × (1 ÷ 26) = 1 ÷ 292 201 338 = 0,0000003%.

Иными словами, если 300 миллионов человек купят билеты, то выиграет кто-то один. Это показывает, почему выигрыш джекпота зачастую вообще не состоится: организаторы лотереи просто не печатают так много билетов, чтобы среди них попался выигрышный.

Правило 4. Вовремя начинайте

Лотерейный билет PowerBall, кстати, стоит 2 доллара. Чтобы подсчитать выгоду, которая окупила бы покупку билета, нужно умножить цену билета на 292 201 338.

Денис Пешехонов

​ ​ ​

Математика поможет подсчитать вероятность выигрыша и определить, что выгоднее: купить 10 лотерейных билетов на одну игру или по билету на 10 разных.

Подробнее о расчётах. Это отсылка к первому пункту, где говорится о том, что выгода от решения равна его ценности, умноженной на вероятность. Если у нас есть событие с вероятностью 1/X и ценностью N, то выгода будет N/X. Мы тратим 2 доллара и можем подсчитать, какого размера выигрыш окупил бы покупку билета:

  • 2 = N ÷ X.
  • N = 2 × X, а X тут как раз равен 292 201 338, как показали расчёты из предыдущей части.

Ещё надо учесть налоги (узнать, какой процент от заявленной суммы фактически достанется победителю, обычно это около 70%). То есть джекпот должен составлять как минимум 850 миллионов долларов, и такое в этой лотерее бывает. Как же так, я ведь в начале сказал, что выигрыш при таком умножении всегда не в пользу игрока?

Дело в том, что если розыгрыш джекпота не состоялся, то он переходит на следующий раз, и поэтому какое-то время деньги копятся, а продажи билетов продолжаются.

В идеальной ситуации вам нужно пропускать все игры, не покупая билет, а потом купить именно на ту игру, в которой розыгрыш действительно состоится.

Но узнать это заранее невозможно. Однако можно начать покупать билеты, как только размер джекпота станет больше упомянутой суммы. В такой ситуации математически игра будет выгодной.

Ещё можно понять, что выгоднее: купить много билетов на одну игру или покупать по одному билету на много игр? Давайте подумаем.

В теории вероятностей есть понятие несвязанных событий. Это означает, что исход одного события никак не влияет на исход другого. Например, если вы кидаете два кубика, то выпадения чисел на них не связаны между собой: с точки зрения случайности, один кубик не влияет на поведение второго. А вот если вы тянете из колоды две карты, то эти события связаны, ведь от первой карты зависит то, какие карты останутся в колоде.

Популярное заблуждение по этому поводу так и называется — ошибка игрока. Оно возникает из-за интуитивного представления человека о связанности несвязанных событий.

Например, если монета много раз подряд выпадает орлом, то мы склонны считать, что шансы выпадения решки из-за этого увеличатся, но на самом деле это не так, шансы всегда одинаковые.

Возвращаясь к лотереям: разные игры — это несвязанные события, потому что последовательность шаров выбирается заново. Так что шансы выиграть в любую конкретную лотерею никак не зависят от того, сколько раз раньше вы в неё играли. Это очень сложно принять интуитивно, потому что человек каждый раз, покупая билет, думает: «Ну вот сейчас-то повезёт, сколько можно, я уже кучу времени играю!» Но нет, теория вероятностей — бессердечная штука.

А вот покупка нескольких билетов для одной игры увеличивает ваши шансы пропорционально, потому что билеты внутри одной игры связаны: если выиграет один, значит, другой (с другой комбинацией) точно не выиграет. Покупка 10 билетов увеличивает шансы в 10 раз, если все комбинации на билетах разные (по факту почти всегда так и есть). Иными словами, если у вас есть деньги на 10 билетов, лучше купить их на одну игру, чем покупать по билету на 10 игр.

После ваших уточнений в комментариях справедливо будет заметить, что вероятность выиграть хотя бы в одной игре в серии из N игр выше, чем вероятность выиграть в любой одной конкретной игре. Впрочем, она всё ещё немного меньше, чем шансы выиграть, купив N билетов на одну игру, но разрыв довольно небольшой.

Если вы просто с зарплаты раз в месяц берёте билетик азарта ради, то, скорее всего, значение для вас имеет сам процесс игры. Математически выгоднее скопить эти деньги и в конце года купить сразу 12 билетов, хотя, конечно, проигрыш в такой ситуации будет восприниматься более сокрушительно.

Правило 5. Вовремя останавливайтесь

Ну и напоследок хочу сказать, что даже вероятность 1/100 с точки зрения отдельного человека — это очень мало. Если вы проверяете такую вероятность раз в месяц, то 100 таких проверок сделаете за 8 лет. Представьте себе, во сколько раз ниже вероятность 1/1 000 000 или 1/100 000 000? Поэтому ставьте всегда только ту сумму, которую не боитесь полностью потерять, и ни рублём больше.

В заключение, как обещал, приведу оценку утверждению из начала статьи. Эти данные для США, потому что утверждение было сформулировано именно для этой страны, к тому же мы выше уже посчитали шансы для американской лотереи.

По статистике, за 2016 год в США было совершено Crime in the US — 2016 около 17 000 убийств, будем считать это средней цифрой. А ещё предположим, что человек является потенциальной целью для убийства, когда он уже взрослый, но не старый — то есть около 50 лет в течение своей жизни. Значит, за эти 50 лет будет совершено около 850 000 убийств. Население США составляет United States Population 325,7 миллиона человек, то есть шансы попасть в случайную выборку размером 850 000 такие:

850 000 ÷ 325 700 000 = 1 ÷ 383 = 0,3%.

Но погодите, это просто шанс быть убитым. А именно по пути за лотерейным билетом? Предположим, вы выходите из дома на работу каждый будний день, в один выходной куда-то выбираетесь, а в другой остаётесь дома. В среднем получается 6 дней в неделю, или около 26 дней в месяц. И один раз в месяц вы покупаете лотерейный билет. Поэтому полученные числа нужно ещё и разделить на 26:

(1 ÷ 383) ÷ 26 = 1 ÷ 9 958 = 0,01%.

И даже при такой грубой оценке это существенно вероятнее, чем выигрыш. Если точнее, то в 30 000 раз вероятнее. На самом деле, конечно, числа будут другие: человек подвергается опасности не только на улице, одни люди больше рискуют, чем другие, женщин убивают почти в четыре раза реже, чем мужчин. Но принцип такой.

Хотя жить без веры в хорошие события и с постоянным ожиданием плохих, даже зная математику, — это не самый лучший выбор.

Меня зовут Иван Мельников! Я – выпускник вуза НТУ «ХПИ», инженерно-физический факультет, специальность «Прикладная математика», счастливый семьянин и просто поклонник игр на удачу. С детства я увлекался лотереями. Мне всегда было интересно, по каким законам выпадают те или иные шары. С 10 лет я записываю результаты лотерей и после анализирую данные.

В моей книге «Секреты Везения или Пошаговый Алгоритм Выигрыша в Лотерее» я хочу поделиться с вами наблюдениями, накопленными годами, а также выводами, которые я смог сделать с помощью своего образования. Играйте по моей системе и уже совсем скоро вы превратите азартную игру в стабильный доход!

Математические шансы на победу

  • Простой расчет с факториалами

Самыми распространенными в мире лотереями являются игры на везение типа «5 из 36» и «6 из 45». Рассчитаем шанс выигрыша в лотерее банально по теории вероятности.

Пример расчета возможности получения джекпота в лотерею «5 из 36»:

Необходимо число свободных ячеек поделить на количество возможных комбинаций. То есть первую цифру можно выбрать из 36, вторую – из 35, третью – из 34 и так далее.

Следовательно, вот формула:

Количество возможных комбинаций в лотерее типа «5 из 36» = (36*35*34*33*32) / (1*2*3*4*5) = 376 992

Шанс выигрыша составляет 1 к почти 400 000.

Давайте проделаем то же самое для лотереи типа «6 к 45».

Количество возможных комбинаций = «6 из 45» = (45*44*43*42*41*40) / (1*2*3*4*5*6) = 9 774 072.

Соответственно, шанс выигрыша составляет практически 1 к 10 млн.

  • Немного о теории вероятности

Согласно давно уже известной теории у каждого шара в каждом следующем розыске есть абсолютно равный шанс выпасть по сравнению с другими.

Но не все так просто, даже согласно теории вероятности. Рассмотрим подробнее на примере подбрасывания монетки. Первый раз у нас выпал орел, тогда в следующий раз вероятность выпадения решки гораздо выше. Если орел выпал еще раз, то в следующий раз ожидаем решку с еще большей вероятностью.

С шарами, выходящими из лототронов, приблизительно та же история, но несколько сложнее и с более существенным количеством переменных. Если один шар выпал 3 раза, а другой – 10, то вероятность выпадения первого шара будет выше, чем у второго. Стоит отметить, что данный закон старательно нарушают организаторы некоторых лотерей, которые меняют лототроны время от времени. В каждом новом лототроне появляется новая последовательность.

Еще некоторые организаторы используют отдельный лототрон для каждого шара. Таким образом, необходимо рассчитывать вероятность выпадения каждого шара в каждом отдельном лототроне. Это с одной стороны немного облегчает задачу, с другой – усложняет.

Но это всего лишь теория вероятности, которая, как выяснилось, не очень-то и работает. Давайте посмотрим, какие есть секреты, основанные на сухой науке и статистических данных, накопленных за не одно десятилетие.

Почему не работает теория вероятности?

  • Неидеальные условия

Первое, о чем стоит поговорить, — это калибровка лототронов. Ни один из лототронов не откалиброван идеально.

Второй нюанс – диаметры лотерейных шаров также не являются одинаковыми. Даже отличие на малейшие доли миллиметров играют роль в частоте выпадения того или иного шара.

Третья деталь – разный вес шаров. Опять же отличие может казаться вовсе не существенным, но оно также влияет на статистику, притом, значительно.

  • Сумма выигрышных номеров

Если рассматривать статистику номеров, выигравших в лотерею типа «6 из 45», то можно заметить интересный факт: сумма цифр, на которые ставили игроки, колеблется между 126 и 167.

С суммой выигрышных лотерейных цифр для «5 из 36» немного другая история. Здесь выигрышные цифры составляют сумму в 83-106.

  • Четные или нечетные?

Как думаете, какие цифры чаще есть в выигрышных билетах? Четные? Нечетные? Скажу вам с полной уверенностью, что в лотереях «6 из 45» этих цифр поровну.

А вот как быть с «5 из 36»? Ведь нужно выбрать всего 5 шариков, четных и нечетных не может быть равное количество. Так вот. Проанализировав результаты розыгрышей лотерей данного типа четырех последних десятилетий, могу заявить, что незначительно, но все-таки чаще, в выигрышных комбинациях появляются нечетные цифры. Особенно, те, которые содержат в себе цифру 6 или 9. Например, 19, 29, 39, 69 и так далее.

  • Популярные группы чисел

Для лотереи типа «6 к 45» числа условно делим на 2 группы – от 1 до 22 и от 23 до 45. Следует отметить, что в выигрышных билетах отношение чисел, принадлежащих к группе, 2 к 4. То есть либо в билете будет 2 числа из группы от 1 до 22 и 4 числа из группы от 23 до 45 либо наоборот (4 числа из первой группы и 2 из второй).

Я пришел к аналогичному выводу, анализируя статистику лотерей типа «5 из 36». Только в данном случае немного иначе дробятся группы. Давайте первой обозначим группы, в которую входят цифры от 1 до 17, а второй – ту, куда помещаются оставшиеся числа от 18 до 35. Отношение цифр из первой группы ко второй в выигрышных комбинациях в 48% случаем равно 3 к 2, а в 52% случаев – наоборот, 2 к 3.

  • Стоит ли ставить на цифры из прошедших розыгрышей?

Доказано, что в 86% случаев в новом розыгрыше повторяется число, которое уже было в предыдущих розыгрышах. Поэтому просто необходимо следить за розыгрышами интересующей вас лотереи.

  • Последовательные цифры. Выбирать или не выбирать?

Шанс на то, что выпадут сразу 3 последовательные цифры, очень низок, и составляет менее 0,09%. А если вы хотите поставить сразу на 5 или 6 последовательных чисел, шанса практически нет. Поэтому выбирайте разные цифры.

  • Числа с единым шагом: победа или проигрыш?

Не стоит ставить на числа, которые идут в единой последовательности. Например, однозначно не нужно выбирать шаг 2 и с этим шагом делать ставку. 10, 13, 16, 19, 22 – однозначно проигрышная комбинация.

  • Больше одного билета: да или нет?

Лучше играть раз в 10 недель по 10 билетам, чем раз в неделю по одному. А также играйте группами. Можно выиграть большой денежный приз и разделить его между несколькими людьми.

Статистика всемирных лотерей

  • Megamillions

Одна из самых популярных в мире лотерей проводилась по следующему принципу: необходимо выбрать 5 чисел из 56, а также 1 из 46 для так называемого золотого шара.

За 5 угаданных шаров и 1 верно названный золотой счастливчик получает джекпот.

  • Как рассчитать теорию вероятности в лотерее
  • Самые крупные выигрыши в лотереи в истории
  • Как выиграть в лотерею при помощи маятника

Расчет шансов

Таким образом, для расчета шанса выигрыша джек-пота в абстрактной лотерее, где нужно верно угадать несколько выпавших значений из определенного числа шаров (например, 6 из 36), нужно рассчитать вероятность выпадения каждого из шести шаров и перемножить их между собой. Учтите, что с уменьшением числа шаров, оставшихся в барабане, вероятность выпадения нужного шара меняется. Если для первого шара вероятность того, что выпадет нужный, равна 6 к 36, то есть, 1 к 6, то для второго шанс составит 5 к 35 и так далее. В данном примере вероятность того, что билет окажется выигрышным составит 6x5x4x3x2x1 к 36x35x34x33x32x31, то есть 720 к 1402410240, что будет равно 1 к 1947792.

Несмотря на такие пугающие числа, люди регулярно выигрывают в лотереи по всему миру. Не забывайте, что даже если вы не возьмете главный приз, существуют еще выигрыши второго и третьего классов, вероятность получить которые намного выше. Кроме того, очевидно, что наилучшей стратегией является покупка нескольких билетов одного тиража, так как каждый дополнительный билет кратно увеличивает ваши шансы. Например, если купить не один билет, а два, то и вероятность победы будет в два раза больше: два из 1,95 миллиона, то есть примерно 1 к 950 тысячам.

Вероятность или шанс угадать комбинацию, развёрнутую ставку, группу чисел —
в зависимости от количества выбранных номеров, для лотерей 5 из 36, 6 из 45, 7 из 49, 6 из 49, 4 из 20, Рапидо —
смотрим по этой ссылке

Вероятности в популярных лотереях

5 из 36, 6 из 45, 7 из 49, 6 из 36, 4 из 20, Матчбол, Рапидо

На этом графике хорошо видно количество комбинаций. Чем меньше сектора,
тем вероятней джек пот, на одну простую комбинацию.

В лотереях 5 из 36 и Рапидо самое малое количество комбинаций — практически не видно на фоне остальных. Если учитывать призовой фонд, то в лотереях Рапидо, 4 из 20, — он самый большой (67% призового фонда), следовательно, выигрыши в низших категория будут чаще, если это можно назвать «выигрышем»… — на дистанции «слив» всё равно обеспечен, если, конечно, не «словится» суперприз! Тем не менее, чем больше возврат при длительной игре, тем больше можно ставить комбинаций, тем вероятней суперприз.

По вероятности выиграть суперприз, лотерея 5 из 36 считается лучшей из всех (без дополнительного), — сейчас «приз», который может достигать десятков миллионов. Далее по популярности у игроков следует лотерея 6 из 45, в которой шансы 1 на 8 миллионов комбинаций.
Лотерея 6 из 45 отличается ещё от остальных неплохой выплатой за приз второй категории, по такому параметру (вероятность-выплата)

Сравним популярные лотереи по вероятности выиграть приз второй категории.
Чем меньше сектора, тем вероятней выигрыш, — в игре одна простая комбинация.

При выборе лотереи желательно учитывать потенциальную выплату за приз второй категории, угадать который более реально. Для этого нужно просмотреть выплаты на сайте лотерей. Вероятность второй категории лучше не превышать 1: 100 000. В этом плане, например, лотереи 7 из 49 и 4 из 20 выглядят не очень привлекательно, у них вероятность второй категории практически сравнима с первой категорией приза лотереи 5 из 36 (1: 376 992). В какую лотерею играть, решает каждый сам!

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *