Как летает вертолет?

Каждый день в мире выполняется более 100 тысяч авиарейсов. В год мировая авиация потребляет около 300 млн тонн топлива. Эти цифры прекрасно отражают масштаб и сложность системы авиатопливообеспечения. Системы, от надежной работы которой во многом зависит безопасность миллионов людей, пользующихся авиатранспортом

Чем заправляют самолеты

Топливо для самолетов бывает двух видов. Поршневые двигатели, которыми оборудуются небольшие самолеты и вертолеты, работают на бензине — так же, как и автомобильные моторы. Правда, по составу такое топливо несколько отличается от автомобильного. Газотурбинные двигатели (турбореактивные и турбовинтовые), которыми сегодня оснащены практически все коммерческие воздушные суда, потребляют топливо для реактивных двигателей, которое также называют авиакеросином.

Основная марка авиакеросина, которым в России заправляют почти все пассажирские, транспортные и военные дозвуковые самолеты и большую часть вертолетов — ТС-1 — топливо сернистое. Оно вырабатывается из нефти с высоким содержанием серы.

В Европе основа системы авиатопливообеспечения — керосин Jet A-1. Он считается более экологичным как раз за счет меньшего содержания серы — при его производстве прямогонная керосино-легроиновая фракция полностью проходит процедуру гидроочистки. Российский авиакеросин — это смесь гидроочищеного и неочищенного прямогонного дистиллятов. В целом же это аналоги — более того, отечественный продукт может использоваться при гораздо более низких температурах, чем «Джет». ТС-1 сегодня наравне с Jet A-1 включен в международные документы и руководства по эксплуатации не только самолетов российского производства, но и лайнеров семейств Airbus и Boeing (правда, только выполняющих полеты по России). Но это авиакеросин для гражданской авиации, не предназначенный для сверхзвуковых самолетов.

«Газпром нефть» запустила НИОКР по созданию неэтилированного авиационного бензина. Вместе с учеными из Всероссийского научно-исследовательского института нефтяной промышленности специалисты компании в 2014 году занялись разработкой рецептуры неэтилированного топлива с октановым числом 91, и сейчас эта работа уже завершена.

Основное авиатопливо для сверхзвуковой авиации — РТ. При его производстве с помощью гидроочистки из нефтяного дистиллята удаляются агрессивные, а также нестабильные соединения, содержащие серу, азот и кислород. При этом повышается термическая стабильность топлива, что крайне важно при полетах на сверхзвуковых скоростях, когда за счет трения о воздух нагревается весь корпус самолета, а вместе с ним и топливо в баках.

Разумеется, РТ, обладающее такими характеристиками, можно использовать и в обычных воздушных судах вместо ТС-1. Для самых же скоростных самолетов применяется авиакеросин Т-6, обладающий еще большей термостабильностью и повышенной плотностью.

Что касается авиабензина, то это, по сути, автомобильное моторное топливо, но с улучшенными свойствами, влияющими на надежность работы двигателя. Именно потребность в повышении детонационной стойкости, октанового числа, сортности, обеспечивающих запас динамических характеристик и надежности, заставляет производителей авиабензина добавлять в него тетраэтилсвинец (этилировать). Из-за токсичности эта присадка давно запрещена при производстве автомобильного бензина, но двигатель самолета работает в гораздо более напряженном режиме, а создать неэтилированный авиабензин, не уступающий по характеристикам этилированному, октановое число которого превышает 92–95, пока не удалось никому.

При этом самым современным и совершенным самолетам и вертолетам с поршневыми двигателями нужен авиабензин с повышенным октановым числом — не меньше 100. Поэтому разработкой экологичных аналогов этилированного авиабензина 100LL (одна из самых востребованных марок в мире) сегодня занимаются ведущие производители и научные центры во всем мире. В том числе подобная программа существует и у «Газпром нефти».

100 тысяч авиарейсов выполняется в мире каждый день

Заправка в крыло

Правильная организация заправки даже одного воздушного судна — процесс сложный и при этом очень ответственный. Инцидентов и катастроф, причиной которых стала некачественно организованная заправка, к сожалению, в истории мировой авиации произошло немало. Достаточно вспомнить аварию 2000 года, когда у Ту-154 авиакомпании «Сибирь», летевшего из Краснодара, при посадке в Новосибирске отказали все три двигателя. Как показало расследование, топливные насосы просто забило частицами эпоксидного покрытия, кустарно нанесенного на внутренние стенки топливозаправщика умельцами одного из краснодарских ремонтных предприятий. Но если в этом случае благодаря профессионализму пилотов обошлось без жертв, то в Иркутске при падении гигантского транспортника Ан-124 на жилые дома в 1997 году погибли 72 человека. Одна из версий причины отказа трех двигателей «Руслана» из четырех — превышение содержания воды в авиационном топливе, которое привело к образованию кристаллов льда, забивших топливные фильтры. Чтобы такого не случалось, весь процесс заправки очень жестко регламентирован, а само топливо проходит несколько проверок качества на пути от нефтеперерабатывающего завода до бака самолета.

Первый этап — выходной контроль на самом НПЗ. Однако качественные характеристики керосина могут измениться при его перевозке в случае несоблюдения всех правил транспортировки. Поэтому при приеме керосина на топливозаправочном комплексе (ТЗК), вне зависимости от того, каким путем оно пришло с завода: по трубе, как в аэропортах московского авиаузла или санкт-петербургском Пулково; железнодорожным или автомобильным транспортом, как это происходит в большинстве воздушных гаваней страны, или, тем более, если керосин проделал долгий путь, включающий и наземные и водные маршруты, как при доставке в отдаленные точки, такие как Чукотка, — обязательно проводится входной контроль. Из каждой партии берутся пробы для лабораторных исследований, а также арбитражная проба, которую сразу опечатывают и хранят на случай возникновения разногласий в оценке качества у разных участников процесса топливообеспечения. Само топливо при закачке в приемные резервуары ТЗК проходит через фильтры с тонкостью фильтрации не более 15 мкм.

Топливо по бакам на современных лайнерах распределяется автоматически с помощью бортового компьютера. Соблюдение баланса крайне важно, так как влияет на центровку самолета. Контролировать же процесс заправки и скорректировать его можно со специальной панели, расположенной рядом с местом подсоединения рукава.

Затем керосин отстаивается в резервуарах, после чего проходит полномасштабную проверку по всем основным параметрам, определенным ГОСТом, таким как плотность, фракционный состав, кислотность, температура вспышки, кинематическая вязкость, концентрация смол, содержание воды и механических примесей, температура начала кристаллизации, взаимодействие с водой, удельная электропроводность. Если экзамен успешно сдан, керосин получает паспорт качества, который становится для топлива пропуском на перрон аэропорта. Правда, перед выдачей для заправки самолета, керосин проходит еще один этап контроля — аэродромный — и еще раз фильтруется, теперь через еще более мелкий фильтр. Проверке подвергается и сама заправочная техника, которую без специального контрольного талона до самолета не допустят.

Заправляют самолеты двумя способами. В крупных современных аэропортах перрон соединен с ТЗК системой центральной заправки, а на самолетных стоянках установлены топливные гидранты. Из них керосин в баки воздушного судна перекачивается через специальные заправочные агрегаты (ЗА). Однако пока все же более распространен другой способ — с помощью цистерн—топливозаправщиков (ТЗ). В свою очередь в ТЗ керосин наливается на пунктах налива — складских или перронных. В зависимости от размера цистерны топливозаправщик может вместить до 60 тысяч литров керосина.

Перед началом закачки топливо еще раз проверяют, правда, без использования лабораторий. Керосин сливается из резервуаров ТЗ в прозрачную банку, и визуально определяется наличие в нем воды, кристаллов льда или осадка. Также проверяется и наличие воды в баках самолета перед заправкой и после нее. Перед подсоединением рукава топливозаправщика к горловине бака и само воздушное судно, и ТЗ обязательно заземляются. В истории бывали случаи, когда разряды статического электричества воспламеняли топливо и вызывали серьезные пожары. Для обеспечения безопасности людей самолеты практически всегда заправляются до посадки в них пассажиров.

Где хранится керосин

Объем топливных баков самого крупного и вместительного до последнего времени пассажирского лайнера Boeing-747 достигает 241 140 л (у последних модификаций). Это позволяет залить около 200 тонн топлива. Более привычные ближне- и среднемагистральные Boeing-737 и Airbus A-320 могут принять по 15–25 тонн.

В большинстве самолетов топливо размещается в крыльях и баке, расположенном в центральной части самолета. На некоторых моделях еще один бак есть в хвосте или стабилизаторе — для утяжеления задней части самолета и облегчения взлета, а также для регулировки центровки самолета в полете.

Сначала топливо вырабатывается из внутренних отсеков крыла, затем из концевых. Однако непосредственно к двигателям керосин поступает только из одного бака — расходного (как правило, центрального), куда перекачивается изо всех остальных емкостей.

Для того чтобы предотвратить снижение давления при расходе топлива и прекращения его подачи в топливную систему, все баки сообщаются с атмосферой с помощью специальных дренажных баков в концевой части крыла. Попадающий в них забортный воздух замещает объем израсходованного горючего.

Топливо по бакам на современных лайнерах распределяется автоматически с помощью бортового компьютера. Соблюдение баланса крайне важно, так как влияет на центровку самолета, нарушение которой может привести к самым печальным последствиям, вплоть до катастрофы. Контролировать же процесс заправки и скорректировать его в случае необходимости можно со специальной панели, расположенной рядом с местом подсоединения рукава.

Сам оператор топливозаправщика в процессе заправки держит в руке специальный прибор контроля Deadman, кнопку которого необходимо нажимать через определенные промежутки времени. Если этого не происходит, заправка прекращается — система воспринимает пропуск в нажатии как нештатную ситуацию. Как только заданное количество керосина попало в баки, автоматика отключает подачу топлива, и заполняются документы, фиксирующие результаты заправки.

Автоматизация по всем направлениям

Постоянно автоматизируется не только сам процесс того, как заправляют самолеты. Именно в этом направлении развивается и вся система авиатопливообеспечения. Уже сегодня клиенты лидеров мирового рынка в этом сегменте могут в онлайн-режиме заказать заправку своего самолета в любом аэропорту присутствия топливного оператора. Такую схему развивает, например, Air Total International, свою интегрированную облачную систему управления топливозаправкой создает и Air BP, причем делает он это совместно с глобальным центром планирования полетов RocketRoute, в платформу которого интегрируются данные о топливозаправочной сети по всему миру.

В этом же направлении двигается «Газпромнефть-Аэро» в рамках реализации программы «Цифровой ТЗК».

241 тыс. л — объем топливных баков одного из самых крупных и вместительных в настоящее время пассажирских лайнеров Boeing-747

Сам процесс заправки по такой схеме выглядит как кадр из фантастического фильма. К лайнеру на стоянке подъезжает ТЗ, пилот, как на обычной АЗС, платит за топливо пластиковой картой с помощью мобильного терминала, которым оборудован топливозаправщик. Водитель ТЗ с планшета оформляет и распечатывает документы, подтверждающие факт заправки для пилота — уже через 10 минут в офис авиакомпании приходят необходимые финансовые документы, а баки самолета заполняются топливом.

Наличие такой системы, очевидно, повышает конкурентоспособность топливных операторов, так как значительно упрощает и оптимизирует процесс планирования полетов их клиентам — авиакомпаниям.

Биокеросин производят из биомассы с помощью процесса Фишера — Тропша, из растительного масла, создают горючее для самолетов и на основе этилового спирта. Биокомпоненты в разных пропорциях (максимум 50 50) смешиваются с обычным авиакеросином, что позволяет сократить объем выбросов углекислого газа в атмосферу почти на 50%.

Зеленый керосин

Еще одно направление развития авиатопливного рынка совпадает с вектором движения рынка автомобильного — это снижение уровня вредных выбросов в атмосферу. Главная технология здесь — создание более чистого топлива, в первую очередь за счет разработки и использования биокомпонентов.

На сегодня процедуру сертификации прошли несколько технологий производства авиационного биотоплива. Биокеросин производят из биомассы с помощью процесса Фишера — Тропша*, из растительного масла, создают горючее для самолетов и на основе этилового спирта. Биокомпоненты в разных пропорциях (максимум 50×50) смешиваются с обычным авиакеросином, что позволяет сократить объем выбросов углекислого газа в атмосферу почти на 50 %. При этом конечный продукт по химическому составу эквивалентен традиционному авиатопливу, и его применение не влияет на эксплуатационные характеристики самолетов.

Одним из первых коммерческие заправки биотопливом начал аэропорт норвежского Осло, а пионером в использовании экологичного керосина стала немецкая Lufthansa. Использование биотоплива одобрено Федеральной авиационной администрацией США (FAA), им уже заправляют свои самолеты в США несколько десятков авиакомпаний.

Но у развития этого направления есть одно но — производство биотоплива пока слишком дорого, поэтому сегодня, во времена низких цен на нефть, оно не может на равных конкурировать с обычным «Джетом», а тем более с ТС-1.

Полезные дополнения

Авиакеросин, как правило, не используется в чистом виде. Для улучшения его характеристик используются различные присадки. Основные из них:

Противодокристаллизационная (ПВК-жидкость): наиболее известная присадка этого типа — жидкость «И-М». При полете на большой высоте топливо охлаждается до очень низких температур (от −30°С до −45°С). В таких условиях вода, содержащаяся в топливе, кристаллизуется, частицы льда могут забить фильтры, и двигатель остановится. Присадки эффективно решают эту проблему.

Антистатическая: увеличивает электропроводность топлива, снижая при этом активность накопления статического электричества в топливной системе и, соответственно, риск возникновения пожара.

Антиокислительная: борется с окислением топлива и отложением смолистых образований в топливной системе и двигателе.

Противоизносная: увеличивает срок эксплуатации механизмов топливной системы.

* Процесс Фишера — Тропша — химическая реакция, происходящая в присутствии катализатора, в которой монооксид углерода (CO) и водород H2 преобразуются в различные жидкие углеводороды. Обычно используются катализаторы, содержащие железо и кобальт. Принципиальное значение этого процесса — производство синтетических углеводородов

Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 628
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 630
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 628
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 630
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 628
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 630
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 628
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 630
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 628
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 630
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 628
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 630
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 628
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 630
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 628
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 630
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 628
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 630
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 628
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 630
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 628
Warning: A non-numeric value encountered in /home/informatio/information-technology.ru/docs/modules/mod_raxo_allmode/helper.php on line 630

Устройство ледокола

Большинство судов имеют узкую палубу, V-образный корпус, почти вертикальный нос и…

Устройство и принцип работы экскаватора

Одноковшовый экскаватор — это тоже средство передвижения, хотя и созданное для копания,…

Как работает атомная подводная лодка

Атомные подлодки и прочие суда с ядерными энергоустановками используют радиоактивное…

Тормозная система на поездах

Тормоза — это самая важная система безопасности на поездах. После 1900 года на всех…

Как сцепляются вагоны друг с другом?

Такая стандартная вагонная автосцепка применяется на большинстве железнодорожных составов…

Как работает реактивный двигатель?

Вращающийся воздушный винт тянет самолет вперед. Но реактивный двигатель с большой…

Устройство и принцип работы подъемного крана

Подъемные краны можно увидеть на любой стройке. Именно там они вытягивают свои мощные…

Принцип работы и устройство электромобиля

Электромобили двигаются под действием электричества, которое первоначально попадает к ним…
Принцип полета самолета и вертолета
Всякое тело, движущееся в воздухе, непрерывно испытывает со стороны последнего противодействие своему движению. Поэтому, чтобы продвинуть тело, нужно преодолеть сопротивление, приложить некоторую силу. Сила сопротивления воздуха, которую встречает движущееся в нем тело, прямо пропорциональна плотности воздуха, площади тела, квадрату скорости движения и зависит от формы тела, его гладкости и положения в воздушном потоке.
На основании этого основного закона аэродинамики можно установить, что если телам различной формы и размеров, помещенным в различную среду, придать одну и ту же силу, то скорость продвижения их будет различной.
Если в поток воздуха поместить тела различной формы — пластинку, тело с угловатыми формами и каплевидное тело, то окажется, что чем больше разница давлений спереди и сзади их, тем больше область завихрения, меньше скорость продвижения тел в воздухе и больше сила сопротивления. Эта сила, направленная прямо против движения тел, называется силой лобового сопротивления, или лобовым сопротивлением.
При обтекании тела с угловатыми формами поток тормозится меньше, чем при обтекании пластинки, следовательно, меньшими будут и область пониженного давления, и лобовое сопротивление (рис. 1).

Если же в поток воздуха поместить каплевидное тело, имеющее более совершенную аэродинамическую форму, то давление впереди и сзади этого тела будет незначительным, так как струйки воздуха плотно обтекают его и почти не образуют завихрений. При наличии таких тел для преодоления лобового сопротивления потребуется наименьшая сила. Из сказанного становится понятным, что в авиации решающее значение имеют обтекаемые формы тел, создающие возможно малое сопротивление и не вызывающие завихрений. К таким телам прежде
всего относятся каплевидные и крылообразные тела. Крылья в самолете являются его основными частями. Они создают подъемную силу и делают возможным полет.
Рассмотрим в общих чертах причины возникновения подъемной силы (рис. 2). Пусть крыло движется в воздухе под некоторым углом атаки. Частицы воздуха, ударяясь о летящее крыло, будут огибать как верхнюю, выпуклую, так и нижнюю, плоскую или слегка вогнутую, поверхность крыла. В одно и то же время струйкам, обтекающим крыло сверху, приходится пройти больший путь, чем струйкам, обтекающим крыло снизу. Значит верхние струйки будут двигаться с большей скоростью, чем нижние.

Из закона Бернулли следует, что чем больше скорость потока, тем меньше в нем давление. Поэтому над крылом создается меньшее давление, чем под крылом. В результате разности давлений крыло, с одной стороны, как бы подсасывается вверх за счет пониженного давления, а с другой — подпирается тоже вверх за счет повышенного давления. Вследствие этого и возникает подъемная сила, действующая снизу вверх и направленная перпендикулярно потоку воздуха. На этом свойстве крыла и основан полет самолета и вертолета как аппаратов тяжелее воздуха.

Подъемная сила у самолета появляется только в том случае, если он движется с достаточной скоростью. Чтобы самолет мог оторваться от земли, подъемная сила его крыла должна быть больше веса самолета.
Для того чтобы самолет мог двигаться в воздухе с определенной скоростью, он должен все время преодолевать сопротивление воздуха, а при разбеге во время взлета еще и трение колес о землю. Силой, преодолевающей сопротивление воздуха и придающей поступательную скорость самолету, является сила тяги воздушного винта, вращаемого мотором.
Устройство самолета
К числу основных частей самолета относятся крылья, корпус, органы устойчивости и управления, органы для передвижения и посадки, винтомоторная группа (рис. 3).
Крылья являются одной из наиболее важных частей самолета. От формы в плане и в поперечном сечении, а также от размеров крыльев зависят лётные качества самолета.
Самолет типа моноплан имеет одно крыло, а типа биплан — два крыла. Верхние и нижние крылья связаны между собой стойками. К верхним и нижним крыльям подвешены на шарнирах элероны. В плане крыло самолета с элероном чаще всего имеет прямоугольную форму с эллиптическим закруглением концов.

Корпус самолета (фюзеляж) является основной частью конструкции, с которой соединяются центроплан, крылья, моторная установка, шасси и хвостовое оперение. Кроме того, он служит для размещения полезной нагрузки самолета (пассажиров, грузов и т. п.).
Органы устойчивости и управления самолетом состоят из элеронов и хвостового оперения.
Элероны являются частью крыла и представляют собой подвижные небольшие крылышки, расположенные по концам крыльев самолета. Элероны служат для сохранения самолетом поперечной устойчивости и для наклона его при поворотах вокруг продольной оси.
Хвост самолета состоит из горизонтального и вертикального оперений. При их помощи самолет сохраняет в воздухе продольную устойчивость, поднимается вверх, снижается и изменяет направление полета.
Горизонтальное оперение состоит из стабилизатора — неподвижной части, обеспечивающей самолету продольную устойчивость в полете (в вертикальном направлении), и подвижной части — рулей высоты. Они являются органами управления самолетом в вертикальной плоскости и служат для перевода его на подъем или снижение.
Вертикальное оперение состоит из киля, неподвижно соединенного с хвостовой частью фюзеляжа и служащего для придания устойчивости самолету в полете (в горизонтальном направлении), подвижной части — руля направления, являющегося органом путевой устойчивости и управляемости. При его помощи можно изменить направление полета самолета вправо и влево, т. е. в горизонтальной плоскости.
Органы для передвижения и посадки — это шасси с хвостовым или передним колесом. Шасси самолета является взлетно-посадочным приспособлением, необходимым для разбега при взлете, смягчения удара при посадке и улучшения управляемости при рулении на земле. В зимних условиях для предохранения от зарывания в снег устанавливается хвостовая лыжа (лыжонок).
Посадка самолета происходит на три точки, например на два передних колеса и одно хвостовое.
Управление самолетом осуществляется при помощи рулей высоты, руля направления и элеронов, Основным требованием, предъявляемым к самолету в полете, является устойчивость и управляемость относительно трех осей (рис. 4), проходящих через центр тяжести самолета — продольной оси ХХ1, поперечной оси УУ1 и вертикальной оси ZZ1, перпендикулярной этим осям. Управляемость самолетом вокруг продольной оси достигается элеронами, поперечной оси — рулями высоты, вертикальной оси — рулем направления. Для управления самолетом служат штурвал и ножные педали. Штурвал соединяется с рулями высоты и элеронами, а ножные педали — с рулем направления и хвостовым колесом. При отклонении штурвала влево поднимаются элероны левых крыльев и опускаются элероны правых крыльев; при этом самолет получает левый крен. При взятии штурвала на себя поднимаются рули высоты и самолет идет на подъем. При подаче штурвала от себя самолет пойдет на снижение.

Управление рулем направления осуществляется путем нажатия ногой педали. Например, при нажатии правой ногой руль повернется направо и самолет развернется вправо.
Винтомоторная группа состоит из мотора, воздушного винта, моторной рамы, системы бензо- и маслопитания и управления мотором. Воздушный винт самолета имеет несколько лопастей правого вращения (по часовой стрелке).
Применяемые самолеты и требования к ним
К самолетам, применяемым для аэрофотосъемки лесов и в лесном хозяйстве, предъявляются различные требования.
В лесном хозяйстве для охраны лесов от пожаров, их тушения, аэротаксации лесов, авиахимической борьбы с вредными насекомыми и других работ наибольшее применение получили самолеты ЯК-12 и АН-2. Самолет ПО-2 снят с производства.
Самолет ЯК-12 — моноплан, с закрытой, но хорошо остекленной кабиной, вмещает четырех человек, включая летчика. Удобен для аэровизуальных наблюдений, имеет хороший обзор и небольшую скорость полета — 90—150 км/ч. Крупно- и среднемасштабная аэрофотосъемка с него возможна только для лесохозяйственных целей при условии невысоких требований в отношении строгого соблюдения высоты полета и угла наклона аэроснимков.
Самолет АН-2 широко используется для авиационной охраны лесов от пожаров, их тушения, авиахимической борьбы с вредными насекомыми, транспорта людей и грузов, а также для аэрофотосъемки. В кабине его свободно размещаются два аэрофотоаппарата, специальное к ним оборудование, в том числе радиовысотомер, статоскоп, и другие приборы, и экипаж до б человек. Это позволяет одновременно производить аэровизуальные наблюдения над лесными массивами. При хорошей устойчивости в воздухе, крейсерской скорости 130—210 км/ч пригоден для средне- и крупномасштабной аэрофотосъемки. Обзор у него для аэровизуальных наблюдений хуже, чем у ЯК-12.
Самолеты ЛИ-2 и ИЛ-12 оборудованы наиболее совершенными пилотажными и аэронавигационными приборами, обладают большой грузоподъемностью и скоростью полета (230—400 км/ч), практической высотой полета до 5000 м, что позволяет применять их для мелко- и среднемасштабной аэрофотосъемки.
К числу специфических требований к аэрофотосъемочным самолетам следует отнести:

1. Необходимость иметь достаточные размеры кабины, позволяющие разместить аэрофотоаппараты и все оборудование к ним (радиовысотомеры, статоскопы и контрольные приборы) и создавать возможность управления ими в полете и устранения мелких неисправностей.
2. Возможность хорошего обзора для аэросъемщика вперед, в стороны и вниз.
3. Способность быстро набирать высоту до 6000 м, обладать крейсерской скоростью до 350 км/ч, иметь запас горючего на 6—8 ч полета.
4. На заданном режиме горизонтального полета самолет должен обладать хорошей продольной, поперечной и путевой устойчивостью, чтобы обеспечить требования, предъявляемые к геометрическому качеству фотографического изображения местности.
Для авиационного обслуживания лесного хозяйства необходимо иметь самолеты как легкого типа, удобные для аэровизуальных наблюдений, с большим диапазоном скорости — от 80 до 200 км/ч, позволяющие производить полеты на низкой высоте, так и тяжелые самолеты с грузоподъемностью в несколько тонн, способные перевозить грузы, рабочих, парашютистов, разные механизмы и вместе с тем пригодные для посадки и взлета с небольших площадей.
Устройство вертолета
Вертолет — летательный аппарат тяжелее воздуха. Иностранное название его — «геликоптер», происходящее от греческих слов hélicos (винт) и pteron (крыло), т. е. винтокрылый. Русское название «вертолет» указывает на основную особенность этого летательного аппарата — «вертикальный полет».
Вертолет способен взлетать вертикально, прямо с места, садиться также вертикально, без пробега. В воздухе он может двигаться в любом направлении, может неподвижно висеть как над пологом леса, так и на высоте нескольких сот метров. Вертолет может производить посадку на поляну среди леса, на сухое безлесное болото и т. д. Взлетные и посадочные скорости, длина разбега и пробега равны нулю, поэтому вертолет не нуждается в специальных аэродромах, он является представителем безаэродромной авиации. Вертолет имеет большой диапазон скоростей — от 0 до 150—200 км/ч. Благодаря этим свойствам он является незаменимым средством связи, транспорта, для выполнения различных заданий при исследовании малодоступных мест в необжитых условиях Севера и Сибири.
К основным частям вертолета относятся; несущий винт, корпус, двигатель, трансмиссия, система управления вертолетом, рулевой (хвостовой) винт и шасси (рис. 5).

Несущий винт у вертолета играет роль крыла. Он приводится во вращение двигателем и служит для создания подъемной силы и тяги. Кроме того, несущий винт является органом управления вертолетом. На вертолетах применяются несущие винты с тремя-четырьмя длинными и узкими (диаметром 15—20 л и более) лопастями. Лопасти несущего винта могут поворачиваться относительно своей оси в осевом шарнире.
Управление движением вертолета по вертикали осуществляется путем изменения оборотов несущего винта или угла установки лопастей. При увеличении скорости вращения винта или угла установки лопастей подъемная сила возрастает и вертолет поднимается. Если обороты винта падают или уменьшается угол установки, то убывает подъемная сила и вертолет снижается. Когда подъемная сила полностью уравновешивается полетным весом вертолета, то он «висит» в воздухе, не снижаясь и не поднимаясь. Как только подъемная сила превысит вес вертолета, он поднимается. Вращаясь, несущий винт стремится повернуть вертолет в сторону, противоположную вращению винта, т. е. создается реактивный момент. Для уравновешивания его используется рулевой винт, который при вращении создает тягу и уравновешивает кручение.

Корпус вертолета выполняет те же функции, что и у самолета. Он связывает все части в одно целое. В нем размещаются двигатель, система управления, специальное оборудование, механизм трансмиссии, кабина для пилота и груза.
Силовая установка и трансмиссия. На современных вертолетах применяются обычные поршневые двигатели внутреннего сгорания с воздушным охлаждением, авиационные газовые турбины и турбореактивные двигатели.
Для того чтобы передать мощность двигателя на несущий и хвостовой винты, применяют специальный механизм, называемый трансмиссией.
Управление, например одновинтовым вертолетом, состоит из трех систем; управления несущим винтом, управления рулевым винтом и управления газом двигателя.
Управление несущим винтом осуществляется ручкой управления обычного самолетного типа при помощи автомата-перекоса и рычагом «шаг-газ». Управление рулевым винтом осуществляется обычными педалями ножного управления. Управление двигателем выполняется тем же рычагом «шаг-газ», которым управляется и несущий винт.
Рычаг «шаг-газ» называется так потому, что при его перемещении одновременно изменяются шаг винта и мощность (газ) двигателя. Например, при движении рычага «шаг-газ» вниз установочные углы или шаг лопасти несущего винта будут уменьшаться, уменьшится при этом и мощность двигателя. Следовательно, вертолет начнет снижаться.
Хвостовой винт устанавливается только на одновинтовых вертолетах. Он уравновешивает реактивный момент несущего винта и осуществляет путевое управление, т. е. используется для выполнения поворота.
Шасси служит для погашения возможных ударов, толчков при приземлении и опорой при стоянке. Шасси бывает колесное, поплавковое и полозковое.
На легких вертолетах обычно бывает три колеса, а на тяжелых — четыре.
Классификация вертолетов
Вертолеты различаются по количеству несущих винтов, их расположению, способу привода вращения. В соответствии с этими признаками вертолеты бывают одновинтовыми с рулевым винтом, с двумя несущими винтами, расположенными соосно, с двумя продольно расположенными винтами, с двумя поперечно расположенными несущими винтами, с реактивным приводом несущего винта и др. (рис. 6).
Наиболее распространенными являются одновинтовые вертолеты с рулевым винтом конструкции М.Л, Миля (МИ-1, МИ-4, МИ-6, В-2, В-8 и др.). Они просты по конструкции и в управлении. Недостатками их являются длинный хвост (большие габариты) и значительная потеря мощности (до 10%) на работу рулевого винта.

У вертолетов соосной конструкции оба винта находятся на одной оси, один под другим. Вал верхнего винта проходит внутри полого вала нижнего винта. За счет вращения несущих винтов в противоположных направлениях погашается реактивный момент. Эти вертолеты имеют небольшие размеры, малый вес, хорошую управляемость и маневренность,
К недостаткам соосных вертолетов относятся потеря мощности нижним несущим винтом, работающим в струе воздуха, отброшенного верхним винтом, и трудность расчета при конструировании.
По этой схеме создаются легкие вертолеты Н.И. Камовым: одноместные КА-10, двухместные КА-15 и четырехместные КА-18.
У вертолетов с двумя продольно расположенными несущими винтами один винт находится над носовой частью фюзеляжа, а другой — над хвостовой. Винты вращаются в противоположные стороны для взаимного погашения реактивного момента. Недостатком их является то, что задний винт работает в воздушной среде, предварительно возмущенной передним винтом, а это уменьшает коэффициент его полезного действия.
Винты у вертолетов с двумя поперечно расположенными несущими винтами укреплены на специальных балках по бокам фюзеляжа. Вращаясь в противоположных направлениях, они создают хорошую поперечную устойчивость.

Многие дети хоть раз в жизни видели в небе летящий вертолет. А у кого-то может быть есть вертолет на радиоуправлении. Вертолет может быть транспортом для быстрого передвижения и участником боевых действий на войне. Он летает так, что дух захватывает и невозможно оторвать взгляд. Но как же такая тяжелая железная машина может оторваться от земли и лететь в нужном направлении?

Давайте разбираться. На крыше вертолета закреплен огромный крутящийся винт с лопастями. Он выполняет функцию крыльев. Этот винт, вместе с еще одним винтом, поменьше способен поднять вертолет вверх, задержать его в воздухе и заставить лететь. Когда винт крутится, лопасти с силой захватываю поток воздуха и, при помощи аэродинамической силы, вертолет летит.

Аэродинамическая сила – это сила, с которой воздух действует на поверхность вертолета. Благодаря вращению лопастей винта над вертолетом создается зона пониженного давления, и частички воздуха как бы выталкивают его вверх. Загребая лопастями воздух, вертолет мчится вперед. Главный винт помогает вертолету лететь прямо вперед.

А при наклоне винта изменяется аэродинамическая сила. Благодаря этому вертолет может лететь не только вперед, но и вбок или даже назад. Но как же наклонить винт, чтобы заставить вертолет лететь вбок? Для этого надо изменить угол атаки. Что такое угол атаки? Каждая лопасть винта может оборачиваться вокруг своей оси (стержня). Угол атаки – это величина, на которую может «задраться» лопасть навстречу воздуху. Когда пилот увеличивает угол атаки сразу у всех лопастей, вертолет взлетает вверх, а когда угол атаки уменьшается – вертолет опускается. Если растет угол атаки лопасти, когда она будет находиться над носом вертолета, то сзади соответственно он уменьшится и вертолет полетит назад. А если растет угол атаки у лопасти пролетающей над левым бортом – вертолет полетит направо.

Если за рычагом управления опытный пилот, вертолет может даже летать вверх ногами, то есть вверх колесами. Вернее летать он так не сможет, а сможет только делать фигуры в воздухе. Для того, чтобы «кувыркнуться» вертолету хватит аэродинамической силы. Но летать вниз лопастями долго вертолет не может. Если сравнивать вертолет с самолетом, можно найти много отличий. Самолету нужно разогнаться, чтобы взлететь и он не может держаться вертикально в воздухе, ему нужно все время лететь вперед. А вертолет может подняться вверх, например, с крыши дома, и висеть в воздухе столько времени, сколько надо. Это позволило вертолету найти применение в разных областях нашей жизни.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *